Example session MLwiN

Tom A.B. Snijders*
March 2007

Contents

1 The start
1.1 Commands e
1.2 Preparations for working with MLwiN
1.3 Datainput L
1.3.1 Direct input of ASCII data
1.3.2 Input of ASCII data via a macro
1.4 Some data transformations L.
1.4.1 Theconstant
1.4.2 Dummy variables oo Lo
1.4.3 First multilevel data manipulations
1.4.4 Global centering
1.4.5 Save the worksheet

2 Model definition

3 Next steps of fitting a multilevel model
3.1 Estimation methods
3.2 Which boxes to check for new effects
3.3 Random slope models and interaction variables
3.3.1 More multilevel data manipulation

4 Posterior means, or level-two residuals
5 Macro editor
6 Heteroscedasticity

7 Assumption checking
7.1 Level-1 OLSresiduals
7.2 Level-two influence diagnostics

8 Multilevel logistic regression
8.1 Aggregation L L

9 Some important commands

*University of Oxford and University of Groningen ,
http://stat.gamma.rug.nl/snijders/ .

_ =
O O WO ~JUTLUl ik WwN

-
-

13
15
15
16
16

19

21

22

25
25
27

29
31

34

Example session MLwiN The start

Introduction

This is an introduction to MLwiN version 2.0. The introduction is built up
by guiding you through a MLwiN session, which uses data from Snijders
& Bosker (1999). It is assumed that you know the basics of working
with Windows (clicking, dealing with menus and windows, etc.) For more
information about MLwiN, you may consult the extensive user’s manual,
which can be downloaded from
http://www.mlwin.com/download/index.html ;

but the Help facility within MLwiN may make this written documentation
almost superfluous.

Sections 1-3 treat the basic operations of MLwiN. For those using this
as a tutorial in MLwiN, it is advised that they study these sections in any
case, and the following sections depending on their interests and research
needs.

1 The start

First start MLwiN. Below the title bar you see the menu bar:
File Edit Options Model Estimation Data Manipulation Basic Statistics Graphs Window Help

First have a look at what is behind these menu items by clicking on each of
them and briefly looking at the list of commands available there.

In the File menu, there are various possibilities that will be needed to start
working. The “worksheet” mentioned there is the name for the MLwiN “system
file”. The first time you start working with MLwiN on a new data set, you will
have to input the data from an ASCII text file (a raw text file) or import it from
another program using the normal Windows cut-and-paste method. During or
at the end of the session you can save the worksheet, which you can then open
later when resuming work on this dataset. The option Print Window Image can
be used to print the window you are currently working in to help you remember
the past.

Have an extensive look in the Help menu so that you get an idea about how
you will be able to get help when actually working with MLwiN. In any case
have a look at the following;:

1. In the Contents, go to Introduction to MLwiN and on to Introduction to
MLwiN. Have a look at this text, and continue by clicking the >> button
in the top menu bar for this help screen. It will be useful to have a glance
at the 16 sections up to and including the page titled ‘Missing data’ to
know the kind of explanation you can get from this help system.

2. Also go to the Index. There you find a very long list of keywords. E.g., look
at each of the keywords Multilevel data structures, then Multilevel models,
and finally Multilevel data manipulations.

3. For an impression of the way in which this Help system gives more specific
information, look at Calculate window and at FAQ.

The main menus for working with MLwiN are Model, which is used for defin-
ing, estimating, and examining various models; and Data Manipulation, which

Example session MLwiN The start

is used for viewing data, recoding, defining new variables (e.g. aggregates over
groups), etc.

1.1 Commands

You can tell MLwiN what to do in two ways: by clicking (the ‘true Windows’
procedure) and by giving written commands. Most of this introduction is about
the use of clicking. But sometimes commands come in handy: they can give
enhanced flexibility and they are convenient for repetitive tasks. Commands
can be collected in macros. A macro is a list of commands to be executed
consecutively, which are collected in an ASCII file, similar to e.g. a syntax file
in SPSS.

Commands can be given by typing them in the bottom line of the Command
Interface! in the Data Manipulation menu, and then hitting the Return key.

Macros can be written and executed in the Macro Editor which can be ac-
cessed through the File menu by choosing New Macro or Open Macro. (Macros
can also be executed by using the Obey command in the Command Interface.
The Macro Editor gives more flexibility than the Command Interface, and it is
advisable to use the Macro Editor.)

1.2 Preparations for working with MLwiN

Depending on the installation of MLwiN, it will usually be necessary to select
the “current directory” in which MLwiN will look for data files, where it will
store results, etc. To do this, click on Options — Directories. Now you are in the
Directories tab; change the Current Directory to the desired directory. (If you
are working on MLwiN installed in a network, the default directory here may
well be a network drive for which you have no write permission, and forgetting
to change it may lead to error messages or even an abortive end of the MLwiN
session.) Leave the rest at the default settings.

There are several ways to record what you have done in a MLwiN session.
You can note on a piece of paper everything that is relevant on the screen. An
alternative is to use the well-known “Copy” facility, which you find under the
Edit menu item but for which you can use also the <Ctrl>-C key. Clicking Copy
or typing <Ctrl>-C will copy the contents of the current window (or the selected
part, if you selected a part with the mouse) to the clipboard. You can then go
to a word processor such as MS-Word and paste these clipboard contents to the
file being edited there. (You may have to use a “Paste special” command in
such a program.) A third possibility is to use the Print Window Image item in
the File menu. A fourth way is provided by the log file. This log file records the
output of commands issued in the command interface or in macros; or, hidden
to you, by the program.?

To request a log file choose Data Manipulation — Command Interface. Give a
mouse click in the bottom line of the Command Interface. There type in

LOGON EXA1.LOG

1The downloadable MLwiN manuals comprise a special manual for the Command interface.
2The program does not record estimation results unless you request this by the commands
fixed, random, and like.

Example session MLwiN The start

where you may change the file name (ezxal.log) to any file name you prefer,
and press the Return key. (If the program tells you that it cannot carry out
this command, the reason is probably that it assumes a default directory on
the network, for which you have no permission to write a file. In this case,
you can either give the file name explicitly with the full drive and path or select
another current directory in the Options menu, as indicated above.) The LOGON
command® makes MLwiN save a history of your session in the log file. What is
in the output window also is stored in the log file.

1.3 Data input

To understand the operation of MLwiN, you should know that MLwiN stores
data (variables) internally in “columns” (or vectors), indicated by C1, C2, etc.,
up to C1500 (the number of 1500 is a default, which can be altered in the
Options — Worksheet menu). In addition, constants can be stored in “boxes”,
indicated by BI to B400. Columns C1090 through C1099 are reserved for
model calculations and should not be used to store data.* To see what variables
you have in your data set, choose Data Manipulation — Names and you get the list
of the 1500 columns with the variable names and for each column, or variable,
also n, the number of cases.
There are four basic ways to get data into MLwiN:

1. direct input of ASCII (“raw”) data, in free or fixed format;

2. cut-and-paste from data stored in another Windows program on your PC;
3. input of ASCII data by means of a macro;

4. input of a worksheet (the MLwiN name for its system file).

For SPSS users, the PreML facility described at the end of Section 1.3.2 may be
very useful.

For the estimation of multilevel models, it is essential that the data are
ordered according to the multilevel structure — i.e., groups in the multilevel
structure should be connected parts in the data set without being interrupted
by data for other groups. If this does not hold for the input data set, it can be
achieved later by sorting the data, but it will be easy to use an original data set
which is already ordered correctly.

MLwiN assumes in many of its operations that data are complete, except
for data that have the value of the missing data code (e.g., 999) defined in the
Options — Numbers menu item. If you have data which includes some missings
and you import them from another program into MLwiN, then usually it is best
to represent the missings in the original program by some code such as 999, and
then export to MLwiN while using this code as a data value. MLwiN uses only
one value to represent missings.

3LOGON will overwrite a possibly earlier existing file with the same name. I you do not
wish this, use LOGA — for LOGAppend — to append the new log at the end of the existing file
with this name.

4If you use bootstrap or quasilikelihood procedures, some more columns are reserved; see
Columns reserved in the Help Index.

Example session MLwiN The start

1.3.1 Direct input of ASCII data

In this session another way to input data will be used in practice, as explained
in the next subsection; but to see how MLwiN works, first we describe how a
raw data file can be read. (When you follow this as a practical example session,
you can just read this subsection and keep it for later reference, if ever.)

In free format data, the variables in the data set must be separated by blanks,
and missings are not allowed (although you may use numerical values such as
999 as a code for missing data; the missing value code is defined in the Options
— Numbers menu item). Click on the File menu and then choose ASCII text file
input. You can choose Browse to look for the file anywhere on your disk, but
you can also select the directory-plus-filename if you know the whereabouts of
the file. For columns, you must know how many variables there are in the data
set, and decide on the columns in which you would like to store them. E.g.,
if the data set contains twenty-five variables, you could store them in columns
C1-C25 but also in C40-C64; or C1, C5, C9, C21-C42. Indicate this by typing
the desired columns, e.g., C1-C25, in the Columns field. Click OK and the data
file will be input.

If the variables in the data file are not always separated by blanks, or if
missing values are indicated by blanks, it is necessary to use formatted data
input. You then have to tell the program the positions of the variables, i.e., the
“format” of the file. If you need this option, click the ? Help button within the
ASCII text file input window for further explanation.

For cut-and-paste data input from another program, consult the cut keyword
in the Help Index. An advantage of this method over raw ASCII data input, is
that you can take along the variable names if these are available in the program
from which the data are taken.

1.3.2 Input of ASCII data via a macro

It can be convenient to combine raw data with variable names (and perhaps
comments, variable transformations, initial model definition, etc.) in one file
that can be submitted to MLwiN as a macro via the Command Interface. This
will be illustrated here in an example.

We shall go through some examples that are also in Chapters 4 and 5 of the
textbook, Multilevel Analysis: An introduction to basic and advanced multilevel
modeling, by Tom A.B. Snijders and Roel J. Bosker (Sage, 1999). The dataset
macro is called MLBOOK1.DAT and it is included in the zipped file collection
MLBOOK.ZIP which can be downloaded from
http://stat.gamma.rug.nl/snijders/mlbookl.htm.

This macro is an ASCII (text) file. Have a look at the file by means of some
text editor (be careful not to save it in Word or Wordperfect format, or as any
kind of file other than ASCII or Text, if you want it to be read by MLwiN). This
file has in the beginning and at the end a number of MLwiN commands, and a
large data set in between. You see that the file begins as follows (the lines are
longer and have been truncated for this display):

echo 0

assign cl-c25

1.000 1.000 15.00 12.33 0.000 0.000 0.000 14.00 180.0 24.00 36.00 46.00
1.000 2.000 14.50 10.00 0.000 1.000 0.000 12.00 180.0 19.00 36.00 45.00

Example session MLwiN The start

1.000 3.000 9.500 11.00 0.000 0.000 0.000 10.00 180.0 24.00 33.00 33.00
1.000 4.000 11.00 10.00 0.000 0.000 0.000 13.00 180.0 26.00 29.00 46.00
1.000 5.000 8.000 6.666 0.000 0.000 0.000 8.000 180.0 9.000 19.00 20.00
1.000 6.000 9.500 9.000 0.000 1.000 0.000 8.000 180.0 13.00 22.00 30.00

The first line tells MLwiN not to echo each data line read to the output
window. The second line announces MLwiN that there will follow data input
for the columns C1 to C25. What is then reproduced here are two series of 25
data values. MLwiN understands by itself that it has to continue with the next
line, so it is not important how many lines are used for each case.

Looking at the end of the file shows that the data ends as follows:

258.0 2283. 12.50 5.333 1.000 0.000 0.000 10.00 25880 11.00 24.00 21.00
258.0 2284. 9.000 8.666 1.000 0.000 0.000 9.000 25880 6.000 22.00 33.00
258.0 2285. 11.00 12.33 0.000 0.000 1.000 13.00 25880 14.00 25.00 26.00
258.0 2286. 10.50 9.333 1.000 0.000 0.000 9.000 25880 11.00 31.00 34.00
258.0 2287. 12.00 10.33 1.000 0.000 0.000 8.000 25880 8.000 29.00 39.00

finish
echo 1
name cl "schoolNR"
name c2 "pupilNR"

name c23 "homework"
name c24 "classsiz"
name c25 "groupsiz"

The command finish comes after the last data line, then the command that
what follows is indeed to be echoed to the output window or log file, then follow
the commands that give the names for the 25 variables. Including these names
makes such a macro very convenient for data input. If you wish to include
comments, they can be given by starting a line (but not in the middle of the
data lines) by the command note, which tells MLwiN to skip this line.

To use this form of data input for reading the variables contained in this file,
which is based on a macro, you must employ one of the two ways of executing
a macro: by the Macro Editor in the File menu, or by the Command Interface,
which is accessible from the Data Manipulation menu.

We use the second way, because due to the large length of the file, the Macro
Editor is very slow to read it. Choose Data Manipulation — Command Interface.
This will also open the Output window (you can close and open this by pressing
the Output button in the upper left corner of the Command Interface). Give a
mouse click in the bottom line of the Command Interface In this bottom line
type in

OBEY MLBOOK1.DAT

(Depending on the version of MLwiN you may get a warning screen which ba-
sically says that the file contains numbers with a lot of decimals, and numbers
will be rounded to 6 significant digits. This is not a problem, therefore just click
on the Done button on this warning screen and the program will continue.)
After any macro is executed, the output window contains both the commands
in the macro and the responses of MLwiN — if any — to the commands; but
the macro commands between the echo 0 and echo 1 statements are omitted.
Note from the Name commands in the macro, that the first variable (C1) is the
school number and the second variable (C2) the pupil number.

Example session MLwiN The start

To see what you have done, click Data Manipulation — Names. You see the
25 defined variables, each with 2287 cases, and their minimum and maximum
values. This helps to check whether data definition and input proceeded cor-
rectly. Now select Data Manipulation — View or edit data. You will see the data
in some of the variables for some of the cases. To see other variables, click on
the “View” field and select the desired variables. By holding down the <Ctrl>
button while you are clicking, you can increase the number of variables to be
viewed. If you click on variables C25 and C26, you will see that C25 contains
data and C26 is empty. In the top of the data window you see the number of
cases for each column; it is 2287 for this data set. At this moment, all columns
still have the same number of cases, but after some operations you may have
created columns with varying numbers of cases. The number of cases in a col-
umn is also called by MLwiN the “length” of this column. To change variables
names or give names to newly created columns, you can use the Names window.
In this window, you can click on a variable, then move the mouse to the window
above the list of variables, enter the desired name, and confirm this name by
pressing the Return key. For 25 variables, this is a lot of work, which is the
reason why the names were included in the MLBOOK1.DAT macro file.

The other way to execute macros is by using the Macro Editor, which is
accessible through the File menu. In this menu, choose Open Macro and choose
the file MLBOOK1.DAT. A problem is, however, that this is a very long file, and
a pretty long time will be required by the macro editor for reading it. Therefore
this method is not chosen in this session.

For SPSS users it can be convenient to use the SPSS include file PreML. inc,
written by Jurjen ledema and available as part of the set of MLwiN macros on
http://stat.gamma.rug.nl/snijders/multilevel/. This include file allows
you to select variables and indicate the grouping variable for the multilevel
structure, and makes SPSS write the data set plus the further information to a
macro for use in MLwiN.

1.4 Some data transformations

The first thing to do now is to make available some transformed variables. Trans-
forming variables can be done by various of the items in the Data Manipulation
— Calculate window; or through commands/macros.

1.4.1 The constant

A peculiarity of MLwiN is that it requires you to make a “constant variable”,
with all values equal to 1, which usually is called cons (but that is up to you).
An extra requirement is that you must tell MLwiN that this variable must have
as many cases as the data set you wish to analyze, in this case 2287 (in MLwiN
terminology, this column must have length 2287). There are various ways to do
this. Two ways are explained here.

One way is to choose Data Manipulation — Calculate; in the blank space in
the upper right part of this window, type in

c26 = 1 + 0O*cl

and press the Calculate button in the bottom of this Calculate window. Since
column C7 has length 2287, the new column C26 will have this length, too.

Example session MLwiN The start

(In this window you can click the ? Help button to be instructed about the
possibilities for calculations.) Now go to Data Manipulation — Names, select
the new variable C26, click on the blank space in the upper left corner of this
window, type

cons

and press the Enter key.

Some alternative ways to do the same thing are explained here, in order to
give you some understanding of the use of commands and the Macro Editor.
In the File menu, click on New Macro. A new macro will be opened, as yet
with the name Untitled;1. Take care that the Output window (connected to the
Command Interface) is open. In the editing field of the Macro Editor, type the
two lines

code 1 1 2287 c26
name c26 "cons"

The code command defines a new variable C26 with all 2287 values equal to 1,
which subsequently gets the name cons. Click on Execute in the bottom line of
the Macro Editor. Then you will see these two commands echoed in the Output
window. In the Names window, you can check that indeed the new variable has
been created.

Instead of the code command, you could also use the calc command, which
follows the same syntax as what is used in the Data Manipulation — Calculate
window, and in this case means that instead of the code 1 1 2287 c¢26 line
you use the command

calc c26 = 1 + Oxcl

The descriptions of these commands can be found in the Help window by
going to the index and looking for command code and command name.

By typing in these lines, you just made a (very short) MLwiN macro. For
convenience, it is advisable to save the macro. This is done by going to the
File menu and click on Save Macro. You will then be prompted for the name
and location of the macro. It will be most convenient to store it in the same
directory where also the MLBOOKI1.DAT file is stored.

1.4.2 Dummy variables

The variable C14 contains the schools’ denominations. To transform this into
dummy variables, use the command DUMMY. Since MLwiN only cares about the
first four letters of any command name, you can type DUMM or DUMMBUTFUN
instead of DUMMY if you really want to. In the Macro Editor, type

dumm c14 c27-c29
name c27 "catholic"
name c28 "protestant"
name c29 "nondepri"

(see Example 6.3 (p. 89) in Snijders & Bosker (1999); the reference category
C14 = 1 is public (non-denominational) schools; ‘nondepri’ stands for non-
denominational private schools). The DUMMy command expects that the values

Example session MLwiN The start

of the first mentioned (input) variable (here C14) are 1,2, ..., k for some number
k; next to this input column, k or k£ — 1 output columns must be mentioned.
Use the View or Edit Data window to see how variables C14, C27, C28, and C29
hang together.

When you now click Execute, the whole macro will be executed, including
the first two lines for the creation of cons. It is not a problem to repeat this
creation. Save the macro again.

1.4.3 First multilevel data manipulations

Before further data transformation, suppose we want to get the distribution of
group sizes as information about the data set, possibly to be used in later calcu-
lations. Go to the window Data Manipulation — MultiLevel Data Manipulations,
choose Operation: Count , On blocks defined by: schoolnr and select Free columns.
Column C380 will then appear as Output Column, because this is the first free
column. Now click on Add to action list and then on Execute. In the Names or
View data window, you can see that this has created a new variable of, again,
2287 cases; for each pupil it gives the number of pupils in his or her school in
this data set.

It is instructive to do this while having the Command Interface open, and
after having unchecked the User field in the Command Interface. (This field
indicates whether you wish to see in the Command Interface only those com-
mands that you have typed in as a user, or also the commands that corresponds
to clicking operations.) Then, upon executing the data manipulation, a few
commands appear in the Command Interface, of which the crucial one is

MLCOunt "schoolnr" C30

This teaches you that MLCO, abbreviating MLCOUNT, is the command for
writing the counts corresponding to the level indicator schoolnr to the new
variable C80. To know more about this command, look at Command MLCO in
the Help index.

If we wish to have a new variable that includes each school size only once
per school, instead of being replicated for each pupil in the school, go to the
Data Manipulation — unreplicate window, choose Input column C80, Take first
entry in blocks defined by schoolnr, and select Free columns. Again click on Add
to action list and then on Execute. This creates a variable C31 of 131 cases, one
case per school. This unreplicate or Take data facility is designed to transform
higher-level variables, present in the data set in replicated form, to a variable
where each unit at his level (here: each school) is represented by only one data
case.”

If you wish to analyze variables at the school level, then the same procedure
can be followed for other school-level variables. E.g., the Input column mixedgra
could be used and treated in the same way. This variable, called COMB in
Snijders & Bosker (1999, p. 76), indicates classes that are a combination of grade
7 and grade 8 pupils; the current data set contains only the grade 8 pupils. Now
the correlation (on the school level) between group size and mixed grade classes

5Looking at the Output window as before, with unchecked user box in the Command
Interface, shows that unreplicating can be carried out by the command TAKE "schoolnr" c30
C1500 C31. This will also create a superfluous column C1500, which subsequently is erased
again by the MLwiN macro system.

Example session MLwiN The start

can be calculated in the Basic Statistics — Averages and Correlations window; the
correlation is shown in the Output window of the Command Interface and is
equal to —0.66, confirming that small grade groups were pooled together.

1.4.4 Global centering

The next steps are to subtract the global averages from the variables C3 (named
ig-verb, verbal intelligence), C13 (ses), and C25 (groupsize). First calculate
these averages by going to the Basic Statistics — Averages and Correlations win-
dow, selecting these three variables (click on them while keeping the <Ctrl>
key pressed so that the earlier variable selection is retained), and requesting the
averages. The results are 11.834, 27.812, and 23.101.

Now go to Data Manipulation — Calculate and there type in

c3 = c3 - 11.834

and after that press the Enter key or press the Calculate button (not both,
because then you would have subtracted this amount twice). Similarly calculate

cl3 = ¢c13 - 27.812
and

c25

c25 - 23.101

Go to the Names window to check the minimum and maximum of these variables
— since they should now have an average of 0, the minimum should be negative
and the maximum positive. If they don’t, you made an error.

Instead of using Data Manipulation — Calculate, you can also type

calc c3 = c3 - 11.834
calc c13 = c13 - 27.812
calc c25 c25 - 23.101

in the Macro Editor. An example of always using the Macro Editor for these
purposes is that you know exactly what you did, and you can easily repeat your
actions.

1.4.5 Save the worksheet

At this moment, it is wise to save the worksheet (remember, in the File menu).
Otherwise the results of your efforts would be lost in case of a failure of the
power, the computer, the program, or perhaps yourself. You will be asked to
give a name; e.g., you can choose the name ezal.ws. The extension ws is a
convenient extension for worksheets. If you get an error message when trying
to save the worksheet, this probably means that you are (unwittingly) trying to
write on a network drive for which you have no write permission. In that case,
either give the full path name or choose another current directory.

10

Example session MLwiN Model definition

2 Model definition

Go back to the View Data window in order to have a look at the data again.
Look at the first two variables, pupilnr (C2) and schoolnr (C1). You see
that the 2287 cases are ordered as follows: the schools define the main order
and within the schools the cases are ordered by pupil number. Such an ordering
is required by the algorithm of MLwiN; if the data are not ordered correctly, use
Data Manipulation — Sort.

The first thing to do after data input is the definition of the nesting struc-
ture and of the dependent variable. The model definition is most conveniently
given and examined in the Model — Equations window. In this window, click
on the y that is in the upper left corner of this equations window. Now the Y
variable window pops up. The “Y variable” is how MLwiN refers to the depen-
dent variable, also called the response variable. Choose langpost (the posttest
on language) as the dependent variable and choose 2 as the number of levels.
Now you can choose the variables that identify the levels: choose schoolnr as
the identifier for level 2 and pupilnr as the identifier for level 1. For a valid
nesting structure, it is required that the cases belonging to one level-2 unit are
contiguous and that they are ordered within the level-2 unit by the identifying
numbers of the level-1 units. It is not a problem if the level-1 identifier (i.e.,
the variable defining the units at level 1) does not have consecutive numbers.
The only requirement is that all data for each group are contiguous in the data
and that, within each group, the unit identifier increases as you go “down the
data”. The MLBOOKI1.DAT data set is correctly ordered in this way.

Above, we already defined the “constant variable” cons. Therefore we have
all we need to fit the simplest multilevel model: the empty model. (Wow!) To
do this, go to the Equations window. What is in red is undefined, the black
symbols are defined. On the bottom of this window you see a tool bar. You
may click on the Name button to replace the symbols y etc. by their names.
Click again, and the names are replaced by the symbols again. Now click on
the red x¢ . In the window that pops up, select cons as the desired variable and
in this window check the boxes Fixed parameter, j (school), as well as i (pupil).
This means, respectively, that the effect of this variable is put in the fixed part,
also in the random part at the school level, and also at the random part at the
pupil level. Clicking Done will show the result in the equations window. Now
you can click the + button at the tool bar. The 4+ and — buttons determine
the amount of detail displayed. Play around with them to have the maximum
amount of detail. Now click the Estimates button and the symbols that refer to
the parameters of the statistical model will light up in blue. Clicking this button
once more will replace the symbols by blue numbers. These are their provisional
values. They are blue, indicating that they have not yet been estimated from
the data.

Now you are in the position to estimate the parameters. Click on the Start
button near the upper left corner of the screen and MLwiN starts calculating.
You will see the movement! After a little bit of time the iterative estimation
algorithm has converged and you can see the estimates in the window. If you
don’t see them, click the Estimates button until you do. The estimates are given,
followed by their standard errors in parentheses. You will see something like
this.

11

Example session MLwiN Model definition

langpost!.j. ~ N(XE, ©3)

langpost, = f3;,cons
Pog =40.364(0.426) +uy tey,

[1r] ~NO @) = Q= [19.421(2923)]
[e DJ}] ~N(0. Q) : Q,= [(;4 569(1 966}]

-2¥aglikelihood(TOLS Deviance) = 16253.220(2287 of 2287 cases in use)

You can get this in e.g. a Word file in the following way. In MLwiN, press
the <Ctrl>-C key in this window; alternatively, click on the Edit window and
select Copy; then go to the Word file and press <Ctrl>-V, or alternatively select
Edit and then Paste Special. You can resize the graphical image that you have
imported in this way in your Word file by clicking on the picture, moving your
mouse to one of the 8 points on the border, and moving the point inward or
outward. Another way to retain this result is to print it by using the Print
Window Image item in the File menu, or to use a log file (see below at the end
of the next section).

Try to get the meaning of all symbols and numbers! Note that cons is the
variable equal to 1; this variable is used to represent the intercept. With € is
meant the covariance matrix of the random part, split here in the random part
for level two (represented by ,,) and the random part for level one (represented
by Q). You see that the fixed effect (also indicated by MLwiN as y) is 40.364
(s.e. 0.426), the level-1 variance is 64.569 (s.e. 1.967) and the level-2 variance is
19.419 (s.e. 2.921). The deviance (= minus twice log-likelihood, see Section 6.2
of Snijders and Bosker, 1999) is 16253.220. You can go to Table 4.1 in Snijders
and Bosker (1999) to see the same results reported.

You can also see the estimates in another window. Select the Model — Es-
timate tables window and you shall see one, or some, of the estimates being
displayed. With the little + and — buttons in the upper left corner of this
window you can add estimate displays. One of the displays has a bold outline,
this is the active display. The parameter in this display can be selected in the
drop down list (choosing between FIXED PART, Level 1: pupilnr, and Level 2:
schoolnr, the latter referring to the random part), while the amount of detail
can be determined by the check boxes. You shall find out how this works by
playing around with it. The fact that the number in one of the fields has a line
through it is no error: this is the previous value of the estimate in the iterative
procedure, and it has a line to stress that it is not a correct outcome of the
estimation process! It can be included in this table to give you the possibility
of checking what happened in the iterative process. You can specify the model
in the Equations window or in the Estimate Tables window, whichever you find
more convenient.

Instead of pasting either of these windows into your Word (or other) file,
you can also get the parameters in the log file. Get the Output window so that
it is visible again. Now click again on Start. To get a listing of the parameter
estimates, go to the Command Interface and first issue the command fixe, then

12

Example session MLwiN Next steps of fitting a multilevel model

the command rand, and then like. An alternative is to use the Macro Editor to
make a little macro with these three commands on consecutive lines, and Execute
this macro. This will list the values of the parameters of the fixed part, of the
random part, and the deviance, referred to as “~2xlog(lh)” (i.e., minus twice the
log-likelihood) in the Output window. Have a look at this window: what is the
estimate of the fixed constant effect, what are the intercept variance and the
residual variance, what are the standard errors of all these estimates? It may
be convenient to arrange the Output window and the Equations window next to
each other to have the best opportunity to compare them and understand what
is what. Note that the Output window is saved only if you have earlier given
the logon command.

3 Next steps of fitting a multilevel model

Continuing our session we wish to examine, e.g., the effect of ig_verb = verbal
intelligence on language achievement. First we like to have some initial data
description. Basic statistics (averages etc.) are computed by using the Basic
Statistics — Averages and Correlation menu item and looking up the result in the
Output window. This yields the results

N Missing Mean s.d.
ig_verb 2287 0 6.2456e-005 2.0689

Note that the mean was earlier subtracted from this variable. The notation
6.2456e-005 means 0.000062456, i.e., 6.2456 multiplied by 10 to the power —5,
which practically equal to 0.

For the dependent variable langpost we get

N Missing Mean s.d.
langpost 2287 0 40.935 9.0037

Now we resume modeling. We had gone only as far as fitting the empty
model. Now let us include iq_verb as an explanatory variable. Go to the Equa-
tions window and, if necessary, press the + button repeatedly to see the maxi-
mum amount of detail of the model. Now click the Add Term button. A window
pops up asking for the Order of the new variable; for main effects the order is
0, so select order 0 and as variable select ig_verd. Confirm this selection (by
pressing the Done button) and you will see that in the Equations window the
variable 1Q_verb,; is added (or z1;; if the Name option is not selected). Since
MLwiN detected that this is a level-one variable (it depends on the pupil), it has
the double index ij representing that this is a variable depending on the pupil
1 and the school j. You can try this feature out by clicking on this variable
again and changing it into schoolses, the mean ses (socio-economic status) in
the school. Since this is a school variable, after confirming this choice it is rep-
resented by schoolSES; or x1; as it depends only on the school, j. But now let
us change this variable again and work with a fixed part consisting only of the
constant cons = xq (do you realize now why this ’variable’ has no subscript?)
and ig_verb as x1. Now click on Estimates (if necessary, repeatedly) to see the
numeric values of the estimates. They are blue because they were not obtained
as a result of fitting this model; indeed, these are still the earlier obtained val-
ues. Click on More (near the upper left corner of the screen) to let the program

13

Example session MLwiN Next steps of fitting a multilevel model

start estimating. (The difference between the Start and More buttons is that
the More button uses the current parameter estimates as the initial values for
the iterative algorithm, whereas Start starts from zero estimates.) You will see
the numbers changing as the algorithm goes through its iteration steps until
convergence. The result is given below. Compare this to Table 4.2 in Snijders
and Bosker (1999). You see that we rounded the figures to two decimals, but
the results further are identical.

langpostl}. ~N(XB, Q)
langpost, = gy, cons + 2.488(0.070)1q_verb,
Py =40.609(0.307) + iy teg

[10] ~NO Q) Q= [9.497(1.516)]
[enu] ~N(0, Q,) : Q,= [4: 227(1 386}]

-2¥oglikelihood(TGLS Deviance) = 15251.770(2287 of 2287 cases in use)

The regression coefficient of ig_verd is estimated as 2.488, with standard error
0.070. The associated t-statistic is 2.488/0.070 = 35.54, quite significant. The
significance of the fixed effect of this variable can also be tested by a deviance
test: the deviance went down from 16253.220 to 15251.770, a tremendous de-
crease of 1001.45 which here is a chi-squared value with one degree of freedom
(because only one parameter was added to the statistical model). Furthermore,
both the intercept variance and the residual variance have decreased consider-
ably.

Besides pasting the Equations window into your text processor, there is an-
other way to keep track of the results of successive model fits. If you go to the
Command Interface and give the commands fixe, rand, and like (or do this through
a macro in the Macro Editor, as mentioned above) while your log file is still on,
you will have the parameter estimates reproduced in the logfile (if logging is
on!!) in the following way (there may be differences in the last decimals):

fixe

PARAMETER ESTIMATE S. ERROR(U) PREV. ESTIMATE

cons 40.61 0.3069 40.61

ig_verb 2.488 0.07005 2.488

rand

LEV. PARAMETER (NCONV) ESTIMATE S. ERROR(U) PREV. ESTIM CORR.
2 cons /cons 1) 9.496 1.515 9.511 1
1 cons /cons 2 42.23 1.286 42.22

like

-2x1log(lh) is 15251.8

Compare these figures with the figures in the Equations window and also
with Table 4.2 of the book to see how everything corresponds. Also go to the

14

Example session MLwiN Next steps of fitting a multilevel model

Estimate Tables window to see the same estimates presented in a different way.
Pressing the Help button in that window gives you excellent help on how to
operate it.

3.1 Estimation methods

There are several statistical methods to carry out estimation in multilevel mod-
els. If you push the button Estimation Control you see a window in which you
can control these methods. The two standard methods are called IGLS (iterated
generalised least squares) and RIGLS (residual, or restricted, igls) in the MLwiN
jargon. The IGLS method yields maximum likelihood estimates. RIGLS is in the
literature also called residual or restricted maximum likelihood, REML. Check-
ing the RIGLS field changes the estimation method to REML. For small sample
sizes, REML is somewhat preferable as an estimation method. Testing variance
components by deviance tests, however, proceeds more easily with unrestricted
maximum likelihood, which is the same as the IGLS method. The reason is
that deviance differences from RIGLS fits can be used as test statistics only for
models that have the same fixed parts. Deviance differences from IGLS model
fits (provided that one model is a strict submodel of the other) can always be
used as test statistics. With the RIGLS method, the estimates produced in the
logfile by the commands fixe and rand are as follows:

fixe

PARAMETER ESTIMATE S. ERROR(U) PREV. ESTIMATE

cons 40.61 0.3081 40.61

ig_verb 2.488 0.07008 2.488

Rand

LEV. PARAMETER (NCONV) ESTIMATE S. ERROR(U) PREV. ESTIM CORR.
2 cons /cons 0 9.594 1.516 9.498 1
1 cons /cons 3 42.25 1.286 42.23

There is not much difference in this case. In more complicated models there
often are bigger differences.

3.2 Which boxes to check
when adding new variables to the model

A crucial part in many MLwiN sessions is adding new variables to the model.
In the present session, we added cons and ig_verb. The default is that variables
get a fixed effect only. To include in the model also a random effect, click on
this variables in the Equations window. Then a pop-up window appears for this
variable with three boxes that could be checked:

O Fixed parameter
O j (Schoolnr)
O i (Pupilnr)

The first indicates the fixed effect, the next two indicate the random effects at
level 2 (Schoolnr) and 1 (Pupilnr), respectively. If you would have a three-level
model, there would be three boxes for the random effects.

15

Example session MLwiN Next steps of fitting a multilevel model

You select contributions to the model by checking these boxes. The default
is the following;:

e for the constant (cons) you select all three, because these represent the
general constant term in the fixed part, the random intercept, and the
level-1 residual, respectively;

e for all variables you select the fixed effect;

e for level-two variables you select only the fixed effect and no random ef-
fects;

o for level-one variables you select the fixed effect and, if you want to include
a random slope in the model (which depends on theory & data), you also
select the random effect at level 2;

e however, for interactions including level-one variables (represented by prod-
uct variables), you usually select only the fixed effect and not the random
effect.

These rules are no more than a first guideline, and in more complicated models
there appear many exceptions to them. But they are adequate for a start in
multilevel modeling.

When you wish to delete a variable from the model, do not do this by
unchecking all three boxes, but by clicking on the delete Term button. (Uncheck-
ing all boxes make you lose the variable, and you can put it back again only
through the Command Interface.)

3.3 Random slope models and interaction variables

Next, we go on with modeling. We wish to go on to defining random effects and
interactions. We wish now to reproduce Table 5.1 of Snijders and Bosker (1999).
The variable ig_verb is given a random effect; more precisely, this effect is ran-
dom at level 2 (i.e., it differs from school to school). This is done by going to the
Equations window, clicking on the z; variable (representing ig_verb) and there
checking the j (school) box. Now you can see that the coefficient is represented
by B1; to express its dependence on the school j. Pressing the More button will
carry out the estimations. The deviance decreases from 15251.8 to 15230.8, a
decrease of 21.0 for 2 degrees of freedom (there are two extra parameters: the
slope variance and the slope- intercept covariance), highly significant again.

3.3.1 More multilevel data manipulation

Now we also have to include the school (rather, classroom) mean of 1Q. However,
this variable is not yet in the data set; only individual IQ is. We calculate the
school mean in the Data Manipulation — Multilevel Data Manipulations window by
choosing Operation Average, Input column iq_verb on blocks defined by schoolnr,
and selecting Free column C33 . When this command has been added to the
action list and executed, we can name the new variable C33 in the Names
window as sch_iqu.

After some experience with MLwiN, users may find it quicker to use the
Command Interface or a macro with the two commands

16

Example session MLwiN Next steps of fitting a multilevel model

mlav C1 "iq_verb" C33
name C33 "sch_iqv"

The command MLAVerage calculates the group averages, where the groups are
defined here by variable C1 = schoolnr.

Adding this variable to the model with a fixed effect only and estimating
the parameters yields the following estimates: (if your results are slightly dif-
ferent, you probably forgot to set the RIGLS estimation method back to the
IGLS method; if they are very different, something may have gone wrong with
centering the variables: check if sch_iqu has average 0, as it should!).

langpost!.j. ~ N(XE, ©3)

langpost, = f,cons + g1q verby + 1.405(0.321)sch_1qy;
By =40.750(0.286) +up, +eg,

Py =2.459(0.083) +u

uyl ~N(O, @) : @, = | 7921317
o -0.822(0.268) 0.200(0.098)

[é’m-j] ~NO. Q) Q.= [41 350(1 337}]

-2¥oglikelihood(IGLS Deviance) = 15213.530(2287 of 2287 caszes in use)

Note that we obtain a 2 x 2 covariance matrix at level 2: the random intercept
variance (7.921), the slope-intercept covariance (—0.822), and the random slope
variance (0.200). Compare these results to Table 5.1. The estimates can also
be inspected in the Estimate tables window. The last decimals can differ due to
lack of computational precision.

From the preceding we learn the following: whenever you have estimated a
model and wish to retain the results, take care that the log file is on and issue
the commands: fixe, rand, like; or paste the results from some relevant window
in a file, using (e.g.) Word. Output will not be saved in some automatic way!

Now let’s go on and estimate a cross-level interaction effect to try to “ex-
plain” the random slope. (Recall that for the definition of product variables to
represent interaction, it is convenient for the interpretation that the “0” value
is within the range — or otherwise meaningful — of each of the factors in the
product. In this case, we use the level-2 variable groupsize, which is centered
just like ig_verd, i.e., their “0” value is their mean.) First add the main effect of
groupsize to the model.

There are two ways to specify the interaction effect. One way is to define
the interaction variable by the calculation

c34 = "iq_verb"x"groupsiz"

give it a name, e.g., 22%iq, and add it to the model (with Order 0 just like above).

The other way is to open the Add Term dialog box, but now choose Order
1. This implies you wish to specify a first-order interaction effect as a prod-
uct of two variables. After doing this, two fields will be opened for variable

17

Example session MLwiN Next steps of fitting a multilevel model

specifications. Choose the variables groupsize and ig_verb. Since these variables
are continous (rather than categorical), you will not be requested to specify
reference categories.

When the main and interaction effects have been added to the model, esti-
mate the parameters again. If you wish to, you can decrease the font size in the
display (use the Fonts button in the Equations window). The result is as follows.

langpost!}. ~ N(XE, ©))

langposg}. = fogcons + ﬁljiq_\-'erb!}. +1.246(0 32(i}scll_iq\-}. +
-0.022(0 Oll)zz*iqij +0.057(0 037)g1'oups;izlj

Py =40.893(0.292) +uy, ey,

By = 2.443(0.082) +u i

Uyl ~N@©, Q) : Q,= 7.668(1.285)
1y -0.769(0.260) 0.178(0.095)

[e] ~NO Q) Q.= [41362(1.287)]

-2¥oplikelthood(TGLS Deviance) = 15208.390(2287 of 2287 cases in use)

(You may be surprised that the variable groupsize has a double index, with 4
as well as j. This is because the nesting here is on schools, and the data set
contains some schools with more than one group.) These results are just like
in Table 5.2. You can select a smaller font size in the Equations window if you
wish.

Another way to change the model is provided in the Estimate Tables window.
You can change the variables in the “active window” (which may represent either
the fixed part, or the random part at level 1, or the random part at level 2)
(defined above) by clicking the + box, and then checking the variables that you
want to be included in this part of the model. This works faster if you want to
change more than one variable at a time.

By now we have changed so much that it is useful to save the results again
in the worksheet like it was mentioned above. In general, it is wise to do this
repeatedly to save you from annoyance when some error occurs due to a bug in
MLwiN or instability of Windows.

The results of the random coefficient multilevel model can be compared to re-
sults of “ordinary” regression analysis (where everything is disaggregated to the
lowest level) by issueing the command olse (“ordinary least squares estimates”)
in the Command Interface. It yields the results

PARAMETER ESTIMATE S. ERROR
cons 40.95 0.1472
iq_verb 2.422 0.07766
sch_iqv 1.344 0.1991
z2%iq -0.01805 0.009826
groupsiz 0.05027 0.02039
SIGMA SQUARED = 49.41

18

Example session MLwiN Posterior means, or level-two residuals

Especially standard errors obtained by ordinary regression are not trustwor-
thy. They often are too low. This especially holds for the school variables.

4 Posterior means, or level-two residuals

The posterior means of the level-2 units can be requested in the Model — Residuals
window. To keep things simple, first specify a model with only the fixed effect
of ig_verb (click on the variables in the Equations window, choose Delete for all
other variables, and for ig_verb choose only the fixed effect). Estimate this model
again. Now go to the Residuals window, where you will come in the Settings tab.
To keep things simple and not get ununderstood output, uncheck all the Normal
scores etc. boxes (unless you know what they mean). Select level: 2:schoolnr to
get the posterior means for the schools, which are just the school-level residuals.
Press the Set columns button. The residuals, their standard errors, and the
standardised residuals will be put into columns C300-C302 unless you indicate
a different starting column. When you press Calc the calculations will be carried
out. In the Data window you can view the residuals and their standard errors.
To get them in your logfile, go to the Command interface and issue the command

print C300-C302
I only gave the command
print C300

which yields output starting with

c300

131
-0.37548
-6.0197
-3.6468
-2.9075
-5.7224
0.80680
-6.3489
-1.3254
3.4082
-1.0165
11 -5.0541

© 00 NO O WN -

=
o

This means that this column has 131 elements (there are, indeed, 131 schools)
and that, e.g., the posterior mean for school 5 (the estimated value for residual
Us) is —5.7224. To get the posterior means (or level-2 residuals) for the random
slope model with a random slope for ig_verb, add the random slope for this
variable to the model (you should know by now how to do this) and estimate
parameters again. Go again to the Residuals window, and specify the Settings tab
as before. Now you will see that MLwiN is going to put the residuals in columns
C300 and C301 , since there are indeed two residuals: the random intercept
and the random slope for ig_verb. Pressing the Calc button and issueing the
command print C300-C301 now gives output starting with

19

Example session MLwiN Posterior means, or level-two residuals

c300 c301
N = 131 131
1 -0.29756 -0.020446
2 -5.0311 0.63247
3 -3.8606 0.54635
4 -2.3994 0.30820
5 -5.8617 0.75835
6 0.64810 -0.063412
7 -6.4978 0.84366
8 -1.4007 0.17338
9 3.3087 -0.38413

These are the estimated values of Up; and Uy, i.e., the posterior means of the
contributions of the schools to intercepts and slopes. The intercepts and slopes
are

Predicted values are calculated in a similar way in the Prediction window.
Using the Help facility, you may find out by yourself how this works.

MLwiN provides two different types of standard errors of the residuals /
posterior means: comparative and diagnostic standard errors. The diagnostic
standard errors are bigger. These are the standard errors of the estimated
residuals about their population mean of 0. They are useful for diagnostic
checking, e.g., when checking normality of the distribution of the random effects
(e.g., Snijders & Bosker, 1999, p. 132-133). The comparative standard errors
are the standard deviation of the difference between the estimated residual and
the (unknown true) random effect. They are useful for comparing groups (level-
two units) with respect to their random effect values (e.g., Snijders & Bosker,
1999, p. 60-63). In the Residuals window, it is shown that next to residuals
themselves, always the comparative standard errors are calculated as well as
the standardised residuals based on the diagnostic standard errors, i.e., using
the definition

residual

standardised residual = — - .
diagnostic standard error

The “caterpillar plots” of residuals with error bars, as presented in Figure
4.4 of Snijders and Bosker (1999), can be made as follows. In the Residuals
window, also select the ranks of residuals, and to have (as in Figure 4.4) error
bars extending up and down for a length of 1.39 times the comparative standard
error, type the number 1.39 in the box before SD (comparative) of residual to.
After having pressed the Calculate button, open the Plots tab, and select the
option single .. residual 4+/- 1.36 sd x rank. After clicking Apply, for each random
effect you get a plot which you can increase in size if you wish, and copy and
paste to use in other programs.

Plots of estimated regression lines can be obtained in a different way. Sup-
pose you wish regression lines as a function of ig_verb. Then you must specify
a model with a random intercept, with or without a random slope for igq_verbd.
It can contain other level-two variables, but if you include any other level-1
variables, it is best to choose variables for which 0 is a meaningful value, so that

20

Example session MLwiN Macro editor

it will be meaningful to plot the regression lines in which these other values are
set equal to 0.

First estimate the posterior means as above. Then open the Model - Pre-
dictions window. In the window that you now see, select cons, iq_verb, and the
other level-2 variables (if any). For cons, deselect the level-1 residual eg;;. This
means that you will have selected a number of fixed effects and one or two level-
two random effects, and not the level-1 residual. The selected components are
added to form the prediction. Select a column in which to put the output from
the prediction, e.g., ¢51. Now open the Graphs — Customised Graph(s) window.
For y choose the predicted values — in this example c¢51 —, for x the variable
iq_verb, choose plot type — line and group — schoolnr. The latter specification
means that for each group as defined by schoolnr, the consecutive plotted values
(in the order defined by the horizontal variable x) are linked by straight lines.
Now click on Apply and the plot will be exhibited.

5 Macro editor

The macro editor can be accessed through the File menu. An easy introduction
is to use the macro CH458.OBE which is also contained in the mlbook.zip file
(this macro has also been called MLBOOK1.0BE in some versions). Unpack the
file CH458.0BE from the file mlbook.zip and put it in the “current directory” of
MLwiN(chosen through Options — directories) where you must also put the file
MLBOOK1.DAT.

Then in the File menu, choose Open macro, go to this directory, select Files
of type: all files (*.*), and then open CH458.0BE.

This opens the file in the macro editor. The macro editor has the nice feature
that MLwiN commands (more precisely, their significant four first letters) are
indicated in blue, notes in green, data and variables in black, and errors (guess
the color). To see the output of the macro, open the output window of the
command interface open (Data Manipulation — Command interface).

Take care that currently, you are not making a log file. To execute the macro,
press the Execute button in the lower left corner of the macro editor. Look in
the output window to see the results. In the current MLwiN directory, also the
file mlbookl.log will have been created.

To understand the macro, you must understand the meaning of the com-
mands. This macro uses, e.g., the following commands:

echo echo commands to the log file and the output window
logo 0 terminate earlier log file, it is was there

logo start new log file

clea delete the earlier model specification

note disregard this line

obey execute a macro

code define new integer variable

name give a name to a variable
dumm construct dummy variable

21

Example session MLwiN Heteroscedasticity

take take the first value from each group to define a new group-level variable
tabu tabulate

aver calculate the average

calc calculate a new variable

pref 0 needed for batch processing

post 0 also needed for batch processing

iden define level identifying variable

expl 1 define an explanatory (‘independent’) variable
setv 1 give a variable a random effect at some level

resp define the dependent variable

batc carry out subsequent estimations in batch (without clicking)
maxi maximum number of iterations per batch estimation

star start estimation

fixe report fixed parameter estimates

rand report parameter estimates in random part of the model
like report deviance

next continue estimation

clrv delete a random effect at some level

olse report OLS estimates

sete add an element to the random effects covariance matrix at some level

A more systematic list is in Section 9. To understand the syntax of these
commands, you can look them up in the MLwiN Command Manual. Alterna-
tively, look in the Help facility for Command echo, Command logo, etc.

6 Heteroscedasticity

Heteroscedasticity is the same as non-constant variances, and sometimes referred
to as complex variation. One of the nice features of MLwiN is that it gives the
very straightforward possibility to let variances depend linearly or quadratically
on explanatory variables. This can be used also if single-level heteroscedastic
models are to be fitted.

When the following example is done after fitting the macro of the preced-
ing section, start by issuing the command clear to get rid of the earlier model
specification.

As an example, estimate a baseline (homoscedastic) model with fixed effects
for ig_verb, sch_iqu, SES, and sex; and with a random slope for iq_verb. These
are the results reported as Model 1 in Table 8.1 in Snijders & Bosker (1999).

22

Example session MLwiN Heteroscedasticity

langPOST, ~ N(YE, Q)

langPOSTy. = Bogeons + ﬁleQ_verby. +1.023(0 RJI}SCMQ"\} +
0 1:‘2[0.014,|scsy. + 2.644(0.264 }scxy

ﬁog =39.530{0.313) + 1

By 2.268(0.081) + iy

g |~ N(O, Qﬂ) L Q,= 8.275(1.331)
Ky -0.763(0.254) 0.169{0.087)
)

E

-2¥oglikelthood(IGLS Deviance) = 15005 490(2287 of 2287 cases m use)

o ..
gy

~N@©0, Q) : Q,= [}' 555(1 1"0]]

Now go the Equations window and click on the variable ig_verb. In the drop-
down menu, select i(Pupilnr), which means that this variable gets a random
effect at level 1. As explained in Section 8.1.2 of Snijders & Bosker (1999), this
means that the level-1 residual variance is a quadratic function of ig_verb. Upon
clicking done, the Equations window displays a two-by-two covariance matrix
also for level 1. Estimating the model gives the following result.

langPOST, ~ N(XE, ()
langPOST, = gyeons + 81,10 verby, + 1.012(0.321)schIQV, +
0 l—l(';l:ﬂ.f)l—lflscsy. + 2 515{{'.153].‘56%.

rg&j = 39.602(0.310) + Uy + ¢ o
}913}' = 2.215(0.077) + Uy + & 1y
Ug | ~ N(0, Qu) L Q,= 8.083(1.310)
Wy -0.5290.241) 0.148(0.080)
€g5 |~ N(O, Q) Q= 38.167(1.313)
2 1y -1.845(0.292) -0.121(0.156)

-2¥oglikelthaod(IGLY Devignee) = 14959 500(2287 of 2287 cases m use)

The interpretation is that the level-1 variance is
var(R;;) = 38.167 — 3.690 ig_verb — 0.121 ig_verb

(note that, as explained in Section 8.1.2, the covariance term must be multiplied
by 2). It does not matter that the ‘variance’ parameter is negative, as long as
the estimated variances for the dependent variable Y;; are always positive.

A linear variance function is obtained by deleting the level-1 variance pa-
rameter. This is done by clicking on it (i.e., on the number —0.121) and replying

23

Example session MLwiN Heteroscedasticity

by ‘yes’ to the question whether to remove this term from the level-one covari-
ance matrix. This fixes this parameter to 0. Estimating the model yields the
following.

langPOSTy. ~N(XE,)

langPOSTy. = ﬁmjcous + ﬁlyIQ_vcrby. + 1.017(0 311}50111(‘!\} +
0 14L$|:{P.014flscsy. + 2 51(*{0.153}563'13.

By = 39.008(0.310) + ny t e g

ﬁm =2.223(0.077) + 2

u@.i| ~NO, @) 0= B 061(1.307) }

Uy -0.5090.240) 0.133(0.077)

e&j} ~ N(0) = _3_ 826(1.195) }
N@O,) 0,
0

€1y _-2 013(0.257)

-2¥oglikelthaod(IGLY Devianee) = 14960.040(2287 of 2287 cases m use)

The increase in deviance, 0.54, is not significant (one parameter is involved,
hence d.f. = 1). The new variance function is

var(R;;) = 37.826 — 4.026 ig_verb .

This result is also given in Table 8.2 in Snijders & Bosker (1999). To reproduce
Model 4 of this table, the new variables IQ* and IQ2+ can be calculated by the
following macro. The function abso is the absolute value. Try to understand the
calculation of the new variables C38 and C39 by writing out the implied equa-
tions separately for ig_verb > 0 and ig-verb < 0. The last two plot commands
are meant only to visually confirm the calculation of these two ‘half squares’.

calc c37 = ’iq_verb’"2

name c37 ’iqv”~2’

calc ¢38 = ’iq_verb’*abso(’iq_verb’)
calc ¢38 = (c38 + ’iqv~2’)/2

name c38 "iqv~2+"

calc c39 = c37 - c38

name c39 "iqv~2-"

plot c38 c3

plot c39 c3

Estimating the model with these two variables added gives the following result.
For the interpretation, see page 113 of Snijders & Bosker (1999).

24

Example session MLwiN Assumption checking

laugPOSTy. ~ N(XE,)

langPDSTy. = Bpyeons + ﬁlyIQ_n'cl‘by. +1.212(0 _%(_PS}SCIIIQ\} +
] l-L}r{r_F.ﬁl-l}sesy. #2323 f"-I{r_F.lf"-l}seKy + -0.306(0 03?‘-’}iq\'”‘2+y. +
0.246(0 U-Iﬁ}iq\"“l-y.

39.728(0.310) +uy +ey

By

— g =T
By =3 236(0.157) + Wy

“g-} ~N@O,) O,

Eut

[=.189(1.173)
0.000(0.000) 0.000(0.000)

e&j} ~NO, Q) : O,= [37.875(1.181) }
) e

e, -2.370(0.225) 0

5

-2¥aglilkelihood(TGLE Deviance) = 14908.000(2287 of 2287 cases m use)

7 Assumption checking

In Chapter 9 of Snijders & Bosker (1999), various methods for assumption check-
ing are discussed. The macros made available at the website of the book give an
easy possibility to replicate some of the examples. In this section, examples are
given of some general-purpose macros that can be used for assumption checking.
These are the macros RES1.OBE, TABLE.OBE, and DINFL.OBE that also are
obtainable from the website of the book. It will be convenient to have these
macros in the working directory of your MLwiN session.

7.1 Level-1 OLS residuals

The specification of the level-1 model can be checked by using level-1 residu-
als estimated by OLS (ordinary least-squares regression) for each group (i.e.,
each level-2 unit) separately. This can be done using the RES1.OBE macro.
As an example, it will be shown how this macro can be used together with
TABLE.OBE to reproduce the left panel in Figure 9.1, which is the average
level-1 OLS residual as a function of ig_verb. (The word ‘average’ is used be-
cause ig_verd, although approached as a continuous variable, has only a limited
number of categories, and it is best to average the residuals within each of these
categories).

As a first step, specify the model with as usual the dependent variable lang-
post, with the level-1 explanatory variables ig_verb, ser, and ses, and so that it
has no level-2 explanatory variables — otherwise the level-1 OLS residuals are not
meaningful. Estimate this model (the deviance should come out as 15032.620).
It will be convenient to save the worksheet at this point, in case anything goes
wrong later on.

In the File — Open Macro menu, open the macro RES1.OBE. This macro

25

Example session MLwiN Assumption checking

calculates the level-1 OLS regressions for all groups with a group size at least
equal to some constant value, of which the default is 10 (this can be changed by
setting the box BI! to a different value, see Command set in the Help facility).
Take care that the Output window is open, so you can see what the macro tells to
the user, which are the names and column numbers of the variables calculated.
It will also be helpful if logging is on, so that the results of the output window
are saved in the log file. The (non-standardized) level-1 OLS residuals are in
column C226. A reduced data set is constructed — reduced because the groups
of size less than 10 are omitted. The explanatory variables in this reduced data
set are in group G4. In the Data manipulation — Groups menu, you can see
that group C4 has columns C3801-C303, corresponding to group textitG1l with
variables iq_verb, sex, ses in the total data set.

To average the level-1 residuals for each group of ig_verb, the TABLE.OBE
macro is used. Open this macro in the macro editor. The start of the macro
explains that it calculates averages over categories. It requires the column num-
bers of the variables, and the minimum size of each category. These are supplied
by issueing the commands

set bl 301
set b2 226
set b3 10

which indicate that we wish to average c226 in categories defined by the variable
c301 for groups of size 10 and larger.

When this macro has been executed, the output window (provided this was
open during execution) tells that rounded values of X = C301 are in column
C211, average values of Y = (226 are in column C2183, and within-category
standard deviations are in column C214. The following simple plot of the aver-
ages plus and minus two standard deviations is given in the output window.

B I AT o S
+

+C C

+

+

2.

+ + + +

+ + + +
+ o+ 4+ o+ -

0.A A A

+ + + +
+ o+ o+ + -

+ 4+ + o+ -

-4.
B I T o S
6. 8. 10. 12. 14. 16.

26

Example session MLwiN Assumption checking

This is like the left-hand panel of Figure 9.1 in Snijders & Bosker (1999), al-
though in a less pretty format.

7.2 Level-two influence diagnostics

Next it is shown how diagnostic statistics can be calculated that express the
influence of the level-two units on the parameter estimates. This is discussed
in Section 9.6.2 of Snijders & Bosker (1999) and in Snijders & Berkhof (2007).
Here, the macro DINFL.OBE is used, which calculates deletion diagnostics for
the influence of level-2 units; the term ‘deletion’ means that for calculating
the influence of each level-2 unit, parameter estimates are used computed after
deleting this particular unit from the data set. This gives a better estimate of
the influence than the method proposed in Snijders & Bosker (1999), which is
entirely analogous except that the deletion principle is not used.

Influence will be calculated for Model 4 of Table 8.2. For this model, the
two ‘semi-squares’ of ig_verb need to be calculated. This can be done by the
commands

calc c30 = abso("ig_verb")*"ig_verb"
calc c31 = "ig_verb"x"iq_verb"

calc c32 = (c31+c30)/2

calc ¢33 = (c31-c30)/2

name c32 "iq+"2 ¢33 "iq-"2"

These new variables ¢32 and ¢33 are the same variables as [Qi and JQ% de-
fined on p. 113 of Snijders & Bosker (1999). Also the within-school average
of ig_verb has to be calculated by the Multilevel Data Manipulations. Calculate
these variables, give the ig_verb variable a random effect at level two, and fit
the resulting model. The resulting model has parameter estimates represented
as follows.

langPOST, ~ MN(XE, £2)

langPO3T, = & ggoons + & | IQ verb, +2.571(0.261)sex, +0.150(0.014)ses, +
-0.327(0.0500g "2, + 0.248(0.042)1g-"2; +1.031(0.314) School_I0);

& gy = 39.635(0.320) +ug; tegy

&= 3.27000.165) +u

g | ~1I0, £2) 0 2, = 93401.277)
iy -0.728(0.227) 0.071(0.071)

[e0;] ~T0 52 = [37.17101.159)]

-2 Maglikelibood(IG LS Deviance) = 14958 TO0{2287 of 2287 cases m use)

When the macro DINFL.OBE is opened in the macro editor, it is seen that
the macro starts with an explanation. Nothing extra needs to be prepared. It
will be helpful, however, to ensure that the Output window is open and logging
is on (as explained in Section 1.2). After clicking Execute, you will have to wait
a few seconds until the calculations are ready. The output window gives several
plots that can be used for diagnostic purposes (where Section 9.6.2 of Snijders

27

Example session MLwiN Assumption checking

& Bosker (1999) and Snijders & Berkhof (2007) can be used as background
material). The calculated variables are indicated in the last lines written in the
output:

note <¢204 is group identifier (unit2_j)
note c205 is group size (n_j)
note Groupwise influence statistics:

note ¢201 = influence on random part parameters (CR_J)
note ¢202 = influence on fixed parameters (CF_j)
note <¢200 = combined influence diagnostic «_ip
note ¢203 = standardized multivariate residual (52_3)

note (c203 approximately chi squared, d.f. in c205)

note <¢206 = p-values for c203

note <¢207 = observed normal deviates for c206

note ¢208 expected normal deviates for c206

note Level-one influence statistics:

note c209 = standardized level-1 group-deletion residuals (res_1)

These are available for further analysis. The most informative are the largest
influence values, because these might point out ill-fitting level-two units. To get
the largest values, we have to order these columns in descending order of C200
= Cj. Ordering can be done using Data Manipulation — Sort but here it will
be done in the Command Interface. MLwiN sorts in ascending order. To sort in
descending order, we have to reverse the order of C200 (and later put this back
again). This is done by the next three commands:

calc c200 = -c200
sort c200 c201-c208 c200 c201-c208
calc c200 = -c200

In this way all variables C200-C208 are sorted correspondingly. To inspect the
main of these variables, issue the command

print c200 c204 c205 c206

The first 12 lines printed in the Output window are the following.

C_j unit2_j n_j p-val
N = 131 131 131 131

1 0.054952 176.00 23.000 0.13642

2 0.046097 40.000 35.000 0.022137
3 0.045150 142.00 24.000 0.18810

4 0.040645 67.000 26.000 0.38442

5 0.029258 147.00 22.000 0.70685

6 0.027783 141.00 20.000 0.78782

7 0.027476 170.00 26.000 0.0016163
8 0.022898 256.00 10.000 0.072687
9 0.022340 15.000 8.0000 0.0057100
10 0.022144 108.00 9.0000 0.00010079

(The numbers are different from those in Table 9.1 of Snijders & Bosker, 1999,
because macro DINFL.OBE calculates deletion residuals, which are treated in
Snijders & Berkhof, 2007, but not in Snijders & Bosker, 1999.) This shows,

28

Example session MLwiN Multilevel logistic regression

e.g., that the largest influence value is C; = 0.054952 for school j = 176,
which contains n; = 23 pupils, and for which the p-value of the standardized
multivariate residual is 0.13642. This influence value is not alarmingly large.
Further the significance test of the fit of this level-two unit is not significant, as
indicated by the p-value. Thus, there is no reason for big concern. On the other
hand, school 108 has a very small p-value of 0.00010079 which does indicate a
significant lack of fit, even with a Bonferroni correction, but the influence of
this school on the parameter estimates is not overly large, and deleting this
school from the data set would not lead to a dramatic change in the parameter
estimates.

8 Multilevel logistic regression

There are various different way to carry out multilevel logistic regression in
various software packages. Statistical theory still has not converged to a single
best method for estimating parameters in multilevel logistic regression models.
In this section we treat the simplest ways to estimate parameters in such models
using MLwiN and illustrate these using examples in Chapter 14 of Snijders &
Bosker (1999).

These examples use a different data set (a small part of the ISSP 1994 survey)
than the previous sections. In order not to be confused with the results from
earlier data sets, it is advised to start with a new MLwiN session for following
this section. The data set is contained in the MLwiN macro 1S9412.DAT, which
also is comprised in the file MLBOOK.ZIP. The file IS9412.DAT is a macro that
can be obeyed using the Command Interface (see Section 1.3.2) or the macro
editor, which will result in importing the data set with the variable labels. When
you have executed this macro, looking at Data Manipulation — Names will show
that you have a worksheet with 10 variables and 2079 cases. This worksheet
corresponds to the description in Example 14.1.

First we shall define the logistic regression model for this data set. The first
step is that we must have available a total of two® variables all equal to 1 for
all cases. Given that the data set already contains the variable C9 = cons, the
quickest way to achieve this is by issueing the commands

calc cl1l1 = c9
name cl1 "denom"

The name denom is shorthand for binomial denominator. This variable indicates
the number of “yes/no” cases for each level-one unit; in casewise (i.e., non-
aggregated) data, this is equal to 1 for each case. The fact that denom = 1 for
all level-one units thus implies that the dependent variable, which is the number
of positive (“yes”) cases for each unit, can have only the values 0 and 1. (For
aggregated binomial data, this can be a variable with higher integer values.)

To define the model, take the following steps in the Model — Equations win-
dow:

e Choose (by clicking on the red y) the dependent variable cohab and specify
2 levels, the level 2 identifier being reg (region) and the level 1 identifier

6Those who used logistic regression in MLwiN versions earlier than 2.0 will note that there
is a simplification, because the bcons variable is not needed any more, but is now made
automatically by MLwiN.

29

Example session MLwiN Multilevel logistic regression

being respnr (respondent).
Check in the Data Manipulation — Names window, that variable cohab
indeed has values 0 and 1.

e Click on the N (for Normal distribution) letter and select Binomial in the
little window that appears. In the additional little window, the logit link
function is the right one. Click Done.

e Click on the red n;; and select the variable denom.

e Click on the Nonlinear button in the bottom bar of the Equations window.
Choose Use Defaults and then click on Done.

e Click on the red Syxo symbol, choose the cons variable, and select both
the Fixed Parameter and j(reg) fields.
This is like the use of cons for multilevel regression for normal distributed
residuals, except that no level-one effect of cons needs to be, or can be,
specified.

These steps should be sufficient to define the empty model for multilevel logistic
regression. When you have clicked the Estimates and Names buttons in the
Equations window, the window should look like this:

cohabz.j.w Binonlial(denolu‘.f ;.'E}.)

logit(;) = pycons

B = Po Ty
b N0 2 [

var(cohabz}.m}.) = mLL* ;;}.)f'denong}.

Now you can click on Start and the result will show in the Equations window
as follows.
cohabz.j.w Binonlial(denolu‘.f ;.'E}.)
logit(;) = pycons
By =-0.276(0.062) + 1,

[10g] N @)+ Q= [0.032(0.023)]

var(cohabz}.m}.) = mLL* ;;}.)f'denong}.

This is the result presented also in Table 14.1 of Snijders & Bosker (1999).

If you also wish to reproduce the results of Example 14.3 (Table 14.2) in Snij-
ders & Bosker (1999), you first need to obey macro ISI2TRAN.MAC for some
additional data manipulations. This makes available the transformed age vari-
ables used for Example 14.3. The functions defined in this example correspond
to the variable names as

30

Example session MLwiN Multilevel logistic regression

o X;(t) = age

o Xs(t) = ag2

o X3(t) = ag2>10
o Xy4(t) = ag2>20 .

(Age is measured in years minus 20, i.e., age is centered in this data set with 20
as the reference value.) By including these four variables with fixed effects and
estimating the parameters, you will obtain the results presented as Model 1 in
Table 14.2. To obtain the results of Model 2, also include a fixed effect of the
variable relig.

8.1 Aggregation

It can be helpful to aggregate dichotomous casewise data to counts with binomial
distributions in subgroups, or to relative frequencies. This will lead to smaller
numbers of cases in the analysis which can be helpful for big data sets. Since
the algorithms for non-linear multilevel models (of which the binomial models
are a point in case) are less stable, this can also contribute to the stability of
the algorithm for parameter estimation. This subsection presents an example
of how this can be done in MLwiN. It is written in a way that still focuses on
the Command Interface; it may be handier to use the Macro Editor instead.

The example again uses the Norwegian cohabitation data set of the ISSP
1994. Suppose that one is interested how cohabitation experience is related to
religion and sex. Including the variables sex and relig and estimating the model
yields the results presented in the Equations window as follows. The number of
cases in the data set is 2079.

cohab, ~ Binomial(denom,,)
logit(;;}.) = fg;cons +0.111(0.091)sex; +-1.800(0 333}1‘e1ig!}.
By =-0.321(0.153) Ty

1] ~ N0 @)+ Q= [o.02400.021)]

var(cohabz}.m}.) = f%;'(l - ;;}.)f'denong}.

Now the data will be aggregated per region in categories defined by sex
and religion. This can be done by employing the Multilevel Data Manipulation
facilities in MLwiN. Briefly, MLwiN will be tricked into treating the data as a
three-level data set, with regions at level three and the sex-and-religion cate-
gories at level two; this will enable us to use the counting facility in MLwiN to
create the appropriate category counts.

First a new variable is constructed that indicates the combined categories
of sex and religion. This is done by calculating a new variable as follows in the
command interface (check that ¢13 still is an empty column):

calc c13 = 10*"sex"+"relig"
name c13 "sex&relig"

31

Example session MLwiN Multilevel logistic regression

Since sex assumes values 1 and 2 while relig assumes only values 0 and 1, this
recodes these variables in a combined variable with codes 10, 11, 20, 21. As a
second step we need to reorder the data according to this variable. Let us make
a new part of the data set. We shall need the variables sex, reg, cons, cohab,
denom, sex€irelig, relig. Go to the Data Manipulation menu and click on Sort. In
the Sort window, choose 2 keys to sort on, and select for the Key code columns
the variables reg and sexérelig. The first sorting key is the region variable
reg, the second sorting key is the combined classification variable sexérelig. For
input columns, select the seven variables sezx, reg, cons, cohab, denom, sex€relig,
relig. For output variables, select C41 to C47 (this is done to keep these new
variables separated from the old ones). Click on Add to Action List and then click
on Execute. In the Names window, you now can give new names to these seven
columns; e.g., use the names sex_a, reg_a, cons_a, cohab_a, denom_a, sexérelig_a,
relig_a where the ‘_a’ stands for ‘aggregated’. In the Data window, have a look
at these data, and check that they still are ordered according to region reg_a
and within regions they are ordered according to sexédrelig_a. This is essential
to the following aggregation operation.
The next step is the data aggregation. Define the auxiliary variable

calc c48 = 100*"reg_a"+"sex&relig_a"
name c48 "aux"

which defines the basic categories within which the data are to be aggregated.
Given that sexérelig_a assumes no values outside the interval from 0 to 99, the
regions are coded in the hundreds which is completely separated from the coding
of sex and religion. In the Data Manipulation — MultiLevel data manipulations
window, choose the following two transformations:

1. Operation: Count, Blocks defined by: aux, Output Column: C49
and click Add to action list;

2. Operation: Sum, Blocks defined by: aux, Input column: cohab_a, Output
Column: C50 and click Add to action list.

The variables ¢49 and ¢50 are, respectively, the total number and the number
with cohabitation experience in the combined categories of sex and relig within
reg. For these new variables, use the names

name c49 "number_a" c50 "conum_a"

They still are replicated number_a times, however. This is corrected by choosing
the Data Manipulation — unreplicate window, and use the following
Take specification:

Take first entry in blocks defined by: aux

Input columns sex_a, reg_a, cons_a, sexé&relig_a, relig_a, aux, c49, c50

Output columns c61-c68

Add these to the action list and execute them. As you will see in the Names
window, this generates eight variables of length 76, which is the number of non-
empty categories of sex by religion within regions. It will be helpful to give
these names:

name c61 "sex_aa" c62 "reg_aa" c63 "cons_aa" c64 "sex&relig_aa"
name c65 "relig_aa" c66 "aux_aa" c67 "number_aa" c68 "conum_aa"

32

Example session MLwiN Multilevel logistic regression

These are the new cases and variables for the analysis. Note that the number
of cases has gone down from 2079 to 76.

For the binomial analysis with the aggregated data, the relative frequencies
rather than the totals conum_aa are needed. Therefore calculate

calc c69 = "conum_aa"/"number_aa"
name c69 "cofrac_aa"

Finally, in the Data Manipulation — MultiLevel data manipulations window, choose
the transformation:

Operation: Sequence, Blocks defined by: reg_aa, Output Column: C70

and again click Add to action list and Execute. Give variable C70 the new name
id1, because it will be the new unit identifier at level 1. It assumes values 1 to
4, corresponding to the 4 possible combined categories of sex and religion.
This finishes the data transformation; save your worksheet if you have not
already done so!
To start with a new model, the command

clear

can be given. Now in the Equations window, specify the dependent variable
cofrac_aa, with two levels indentified by reg_aa and id1, and the binomial dis-
tribution with binomial denominator number_aa. Define the first explanatory
variable as cons_aa, with a fixed effect and a random effect at level 2. Now the
Equations window should look like

coﬁ'ac_aaz.j.w Binomial(nlunber_aa‘}.. ;;.j.)
logit(;) = pycons_aa

B = Po Ty
b N0 2 [

var(coﬁ‘ac_a%j ;E.j.) = ;;J.j(l - ;;.j.).f' nlunber_aa‘.j.
where the formula
var(cofrac_aa;; | mij) = mij(1 — mij)/number_aa;;

follows from the properties of the binomial distribution.
Estimating the parameters gives the following results:

coﬁ'ac_aaz.j.w Binomial(nlunber_aa‘}.. ;;.j.)

logit(z,) = pycons_aa +0.111(0.091)sex_aa; +-1.800(0.223)relig_aay
By =-0.321(0.153) Ty

1] ~ N0 @)+ Q= [o.02400.021)]

var(coﬁ‘ac_a%j ;E.j.) = ;;J.j(l - ;;.j.).f' nlunber_aa‘.j.

33

Example session MLwiN Some important commands

These are exactly equal to the results obtained for the non-aggregated data.
(In other cases, there can be differences in the last decimals.)

9 Some important commands

It can be a nuisance looking in the MLwiN Command Interface Manual for the
most important commands — there are so many of them... Above we already
encountered the following commands:

1. calc for calculation
2. logon for starting a log file

loga for appending a log file

L

assign for entering data (assigning values to columns)

o

echo for echoing commands to the output window and log file
name for naming columns

obey for executing macros

® N>

code for defining variables consisting of consecutive numbers 1 to n, pos-
sibly repeated;

9. dumm for defining dummy variables
10. mlco for defining multilevel count variables
11. take for taking out the disaggregation in higher-level variables
12. mlav for defining multilevel averages
13. fixe to show the estimates of fixed effects in the output window

14. rand to show the estimates of random part parameters in the output win-
dow

15. olse to show the estimates for an OLS (ordinary least squares) fit
16. sort for sorting (ordering) a variable
17. print for printing the values of a variable.

The commands logon and echo are toggle commands: e.g., if the current state of
echoing is “off”, then the command echo will change it to “on”; whereas if the
current state is “on”, then the command echo changes it to “off”. There are the
alternative forms echo 1 for turning on, and echo 0 for turning off irrespective of
the current state. For reading more about all these commands, check the help
file (e.g., by looking up command echo in the Help index) or search for the term
in the MLwiN Command Manual.

Some other commands are the following. Note that the commands reporting
output in the Output window will write this output to the log file, provided that
the log file is being written and the Output window is open.

34

Example session MLwiN Some important commands

18.
19.

20.

21.
22.
23.
24.
25.

26.

27.

resp selects the response variable

expl selects explanatory (“independent”) variables (watch out, this also is
a toggle!)

iden k selects a variable to be a level identifier at level k (where k is a
number)

setv selects a variable to have a random effect
clearv deletes a random effect from the model
start begins the estimation algorithm

next continues the estimation algorithm

batch 1 requests batch processing of estimation runs, and is a necessary
command for estimating parameters (otherwise start and next will result
in only one step in the estimation algorithm)

mlse defines a new variable containing case sequence numbers within higher-
level units (this is an alternative to code which is useful also for non-
balanced data)

ml.. there are a variety of multilevel data manipulation commands, all
beginning with the letters ml

An extensive example of commands can be found in the macro file
CH458.0BE, which can be used to reproduce the tables in Chapters 4, 5, and
8 of Snijders and Bosker (1999), and which is used above in Section 5.

References

Snijders, Tom A.B., and Roel J. Bosker (1999). Multilevel Analysis. An introduc-
tion to basic and advanced multilevel modeling. London, Thousand Oaks CA,
New Delhi: Sage Publications Ltd.

Snijders, Tom A.B., and Johannes Berkhof (2007). Diagnostic checks for multilevel
models. Chapter 3 in Jan de Leeuw & Erik Meijer (eds.), Handbook of Multilevel
Analysis. Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris,
Tokyo: Springer. In press. Available from
http://stat.gamma.rug.nl/snijders/publ.htm

35

