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Introduction

In this module, we examine the implications of linear
combination theory for the modeling of the residual covariance
structure in growth curve modeling. We discover that there are
a number of possible forms for this covariance structure, and
these forms require differing numbers of degrees of freedom to
model. Consequently, there is a possibility that a more
“compact” model may be able to account for our growth curve
data.
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A Model for Cognitive Performance

Our discussion in this section will be built around a particular
example and data set”

1 Willett (1988) examined cognitive performance on a
“opposites naming” task over the course of 4 weeks

2 In this time-structured data set, 35 people completed an
inventory once every week

3 In addition, at wave 1, each person also completed a test of
general cognitive ability (COG), which (after centering) is
used as a level-2 predictor to predict both slopes and
intercepts

> data <- read.table("opposites_pp.txt",header=T,sep=",")

> attach(data)

> options(digits=9)
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A Model for Cognitive Performance

Denoting Xi = COGi − COG , and Ti = TIMEi to simplify the
notation, the standard multilevel model is

Yij = π0i + π1iTj + εij (1)

π0i = γ00 + γ01Xi + ζ0i (2)

π1i = γ10 + γ11Xi + ζ1i (3)

where
εij

iid∼ N (0, σ2ε ) (4)

and [
ζ0i
ζ1i

]
iid∼ N

([
0
0

]
,

[
σ20 σ01
σ10 σ21

])
(5)
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A Model for Cognitive Performance

Combining Equations 1 – 5, we get the composite model

Yij = γ00 + γ10Tj + γ01Xi + γ11Xi × Tj + rij (6)

where the composite residual rij is

rij = εij + ζ0i + ζ1iTj (7)

In using Equation 7 above, we will need to remember that, for
given i and/or j , Tj is a constant while the εij , ζ0i , and ζ1i are
random variables
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The Residual Vector

Suppose we were to list the Yij in order in a vector y .

There would be a corresponding vector r containing the
residuals.

Since these residuals are random variables, they have a
multivariate distribution, and we can derive the residual
variance-covariance matrix using the standard rules for linear
combinations. For simplicity, suppose there were just 2 people,
and therefore only 8 observations. The vector r would look like
this:
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The Residual Vector

r =



r11
r12
r13
r14
r21
r22
r23
r24


=



ε11 + ζ01 + ζ11T1

ε12 + ζ01 + ζ11T2

ε13 + ζ01 + ζ11T3

ε14 + ζ01 + ζ11T4

ε21 + ζ02 + ζ12T1

ε22 + ζ02 + ζ12T2

ε23 + ζ02 + ζ12T3

ε24 + ζ02 + ζ12T4


(8)
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The Variance of a Residual

Consider the residual rij = εij + ζ0i + ζ1iTj . What is its
variance? To answer this question, we simply apply the
heuristic rule, remembering that for a given j , Tj is a constant.
We could begin by squaring the expression. However, recall that
our beginning assumption is that every εij is independent of
everything, including any other ε. So

Var(rij ) = Var(εij ) + Var(ζ0i + ζ1iTj )

= σ2ε + Var(ζ0i + Tj ζ1i)

= σ2ε + Var(ζ0i) + Var(Tj ζ1i) + 2 Cov(ζ0i ,Tj ζ1i)

= σ2ε + Var(ζ0i) + T 2
j Var(ζ1i) + 2Tj Cov(ζ0i , ζ1i)

= σ2ε + σ20 + T 2
j σ

2
1 + 2Tjσ01 (9)
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The Covariance of an Individual’s Residuals
Uncorrelated εij

For different individuals, none of the individual constituents of
the rij are correlated, so residuals across individuals must have
zero covariance. However, for a given individual, the residuals
will be correlated. Let’s derive the covariance for two residuals at
different times on the same individual. Again since εij and εij ′

are independent of each other and everything else, they cannot
contribute to covariance, so we can simplify the calculation by
eliminating them before applying the heuristic rule

Cov(rij , rij ′) = Cov(ζ0i + ζ1iTj , ζ0i + ζ1iTj ′)

= Cov(ζ0i , ζ0i) + Cov(ζ1iTj , ζ0i)

+ Cov(ζ0i , ζ1iTj ′) + Cov(ζ1iTj , ζ1iTj ′)

= Var(ζ0i) + Tj Cov(ζ1i , ζ0i)

+Tj ′ Cov(ζ0i , ζ1i) + TjTj ′ Cov(ζ1i , ζ1i)

= Var(ζ0i) + Tj Cov(ζ0i , ζ1i)

+Tj ′ Cov(ζ0i , ζ1i) + TjTj ′ Var(ζ1i)

= σ20 + (Tj + Tj ′)σ01 + TjTj ′σ
2
1 (10)
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The Covariance of an Individual’s Residuals
Correlated εij

So far, we have assumed that the within-subject residuals are
uncorrelated across time. However, there are excellent reasons
to believe that frequently this will not be the case.

So, suppose, for a given individual i , Cov(εij , εij
′) 6= 0.

What will be the new equation for Cov(rij , rij ′)? (C.P.)

Cov(rij , rij ′) = σ20 + (Tj + Tj ′)σ01 + TjTj ′σ
2
1+?? (11)
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The Covariance of an Individual’s Residuals
Correlated εij

So far, we have assumed that the within-subject residuals are
uncorrelated across time. However, there are excellent reasons
to believe that frequently this will not be the case.

So, suppose, for a given individual i , Cov(εij , εij ′) 6= 0.

What will be the new equation for Cov(rij , rij ′)? (C.P.)

Cov(rij , rij ′) = σ20 +(Tj +Tj ′)σ01+TjTj ′σ
2
1 +Cov(εij , εij ′) (12)
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Block Diagonal Covariance Matrix

As shown in Equations 7.9 and 7.10 on page 250 of Singer and
Willett, the vector of residuals will have a covariance matrix
that is typically referred to as block diagonal. For the first 8
observations, for example, the covariance matrix will look like
this:



σ2r11
σr11,r12 σr11,r13 σr11,r14 0 0 0 0

σr12,r11 σ2r12
σr12,r13 σr12,r14 0 0 0 0

σr13,r11 σr13,r12 σ2r13
σr13,r14 0 0 0 0

σr14,r11 σr14,r12 σr14,r13 σ2r14
0 0 0 0

0 0 0 0 σ2r21
σr21,r22 σr21,r23 σr21,r24

0 0 0 0 σr22,r21 σ2r22
σr22,r23 σr22,r24

0 0 0 0 σr23,r21 σr23,r22 σ2r23
σr23,r24

0 0 0 0 σr24,r21 σr24,r22 σr24,r23 σ2r24
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Block Diagonal Covariance Matrix

Singer and Willett refer to the 4× 4 block representing the
within-subject covariance matrix of composite residuals as Σr .

Under the assumptions of the model, the compound residuals in
the mixed model have a particular structural form given by
Equation 12.

The simplest version, which Singer and Willett refer to as the
“standard” version, is given by Equation 10.

As we have seen, this “standard” structure is a rather
complicated function of model parameters and the coded values
of time.

Singer and Willett then go on to discuss other ways of directly
modeling the covariance structure of the composite residuals.
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Error Covariance Structure in Matrix Format

Recall how the model for the ith individual can be expressed in
matrix format as

y i = X iβ + Z ib i + εi

= X iβ + r i

b i ∼ N (0,Ψ), εi ∼ N (0, σ2Λi) (13)

where X i is the fixed effects regressor matrix for the ith
person, and Z i is the random effects regressor matrix, which
usually contains a subset (perhaps all) of the columns of X i .
The vector β contains fixed effects, while b i contains the
random effects. Note that the general form has the covariance
matrix of the εi as σ2Λi , where Λi is a correlation matrix, while
the “standard assumption” has Λ = I .
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Composite Residual Covariance Structure

From standard matrix algebra, since r i = Z ib i + εi , we have

Cov(r i) = Z iΨZ ′
i + σ2Λi (14)

The standard assumption of uncorrelated within-subject errors
(the εij ) gives

Cov(r i) = Z iΨZ ′
i + σ2I (15)
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Example Computation

For example, consider the result of fitting the model on page
247, using, as Singer and Willett did, REML.

> library(lme4)

> fit.1 <- lmer( OPP ~ TIME + CCOG + TIME:CCOG + (1+TIME|ID))

> fit.1

Linear mixed model fit by REML

Formula: OPP ~ TIME + CCOG + TIME:CCOG + (1 + TIME | ID)

AIC BIC logLik deviance REMLdev

1276.28 1299.82 -630.142 1266.96 1260.28

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 1236.4132 35.16267

TIME 107.2492 10.35612 -0.489

Residual 159.4771 12.62843

Number of obs: 140, groups: ID, 35

Fixed effects:

Estimate Std. Error t value

(Intercept) 164.374291 6.206096 26.48594

TIME 26.959981 1.993950 13.52089

CCOG -0.113553 0.504012 -0.22530

TIME:CCOG 0.432858 0.161933 2.67306

Correlation of Fixed Effects:

(Intr) TIME CCOG

TIME -0.522

CCOG 0.000 0.000

TIME:CCOG 0.000 0.000 -0.522
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Example Computation

We can get the estimated Ψ with a bit more precision with the
VarCorr function:

> VarCorr(fit.1)

$ID

(Intercept) TIME

(Intercept) 1236.413173 -178.233362

TIME -178.233362 107.249200

attr(,"stddev")

(Intercept) TIME

35.1626673 10.3561190

attr(,"correlation")

(Intercept) TIME

(Intercept) 1.000000000 -0.489452056

TIME -0.489452056 1.000000000

attr(,"sc")

sigmaREML

12.6284257

> Psi <- matrix(c(1236.413173, -178.233362,-178.233362,107.2492),2,2)
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Example Computation

Since the data are time-structured, all the Z i are the same, i.e.,

Z =


1 0
1 1
1 2
1 3

 (16)

> Z <- matrix(c(1,1,1,1,0,1,2,3),4,2)

> sigma <- 12.6284257

> I <- diag(1,4,4)
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Example Computation

We can compute the covariance matrix of the composite
residuals in R easily as

> cov.r <- Z %*% Psi %*% t(Z) + sigma^2 * I

> cov.r

[,1] [,2] [,3] [,4]

[1,] 1395.890309 1058.179811 879.946449 701.713087

[2,] 1058.179811 1146.672785 916.211487 845.227325

[3,] 879.946449 916.211487 1111.953661 988.741563

[4,] 701.713087 845.227325 988.741563 1291.732937
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Error Covariance Structure in Matrix Format

For ease of comparison with Equation 7.14 on page 255 of
Willett and Singer, we can round to one decimal place. There
are some discrepancies.

> Singer.Willett.7.14 <- matrix(c(1395.9,1058.2,880,701.7,1058.2,1146.8,

+ 916.2,845.2,880,916.2,1112.3,988.8,701.7,845.2,988.8,1294.4),4,4)

> round(Singer.Willett.7.14 - cov.r,1)

[,1] [,2] [,3] [,4]

[1,] 0.0 0.0 0.1 0.0

[2,] 0.0 0.1 0.0 0.0

[3,] 0.1 0.0 0.3 0.1

[4,] 0.0 0.0 0.1 2.7

The discrepancies are probably attributable to rounding
differences in most cases, but careful tracing of the calculation
of element (4,4) of the matrix on page 252 shows what appears
to be a “digit transfer” in their rounded computation.
Specifically, using the rounded values on page 252, one obtains
1292.4, rather than the printed value of 1294.4.
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Which Residual Structure?

In modeling the covariance structure of residuals, one has
several choices which can and should be motivated by both
theoretical and practical concerns.

Let’s review some of the major choices.
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Fixed Effects Only

If the model has only fixed effects, then one may write

y i = X iβ + εi (17)

In this case, the classic assumption is that
Cov(y i) = Cov(εi) = σ2I . A more relaxed assumption is that
Cov(y i) = Cov(εi) = σ2Λi In either case, the definition of the
“residual” is clear, it is the εi term.
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Modeling the Composite Residual

If the model includes fixed and random effects, then the
covariance matrix of the y i is determined by both the random
effects term Z ib i and the error term εi , as shown above in
Equation 14.
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Modeling the Composite Residual

Singer and Willett present the scalar algebra equivalent of
Equation 14, and call it the “standard structure” for the
covariance matrix of the “composite residual” r i = Z ib i + εi .
They then propose to go on and model other structures for the
covariance matrix of r i . It is important to realize that when
modeling “other structures,” you have, more or less, dispensed
with the random effects term, and are no longer fitting a
random effects model. You are now, in fact, fitting the model of
Equation 13.
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Modeling the Composite Residual

This choice may be reasonable in some contexts. However, if
you are comparing the “standard structure” of Equation 15 with
some other structure, the models are not nested, because you
have, by directly altering the covariance structure of the r i

instead of the εi , implicitly, wiped out the random effects term
and simultaneously changed the model for the covariance
structure of the εi .
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Modeling the Error Term

In a model with both fixed and random effects, and alternative
to modeling the covariance structure of the composite residual
is to model the covariance structure of the εi , that is, model the
structure of the matrix Λi . This option is not discussed by
Singer and Willett in their Chapter 7 treatment.
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Choosing between the Two Residual Modeling Options

Pinheiro and Bates (2000), in their book “Mixed-Effects Models
in S and S-Plus,” delineate carefully between the options of

1 Dropping the random effects contribution and modeling the
covariance structure of the r i , using the gls function, and

2 Keeping the random effects contribution and modeling the
covariance structure of the εi , using the \lme function
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Choosing between the Two Residual Modeling Options

The choice between an lme model and a gls model
should take into account more than just information
criteria and likelihood tests. A mixed-effects model has
a hierarchical structure which, in many applications,
provides a more intuitive way of accounting for
within-group dependency than the direct modeling of
the marginal variance-covariance structure of the
response in the gls approach. Furthermore, the
mixed-effects estimation gives, as a byproduct,
estimates for the random effects, which may be of
interest in themselves. The gls model focuses on
marginal inference and is more appealing when a
hierarchical structure for the data is not believed to be
present, or is not relevant in the analysis, and one is
more interested in parameters associated with the error
variance-covariance structure, as in time-series
analysis and spatial statistics. (Pinheiro & Bates,
2000, pp 254–255.)
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This is just a general, positive-definite covariance matrix. It
adds a significant number of free parameters to the fitting
process, since a p × p covariance matrix has p(p + 1)/2
non-redundant elements.

σ21 σ12 σ13 σ14
σ21 σ22 σ23 σ24
σ31 σ32 σ23 σ34
σ41 σ42 σ43 σ24

 (18)
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Compound Symmetry


σ2 + σ21 σ21 σ21
σ21 σ2 + σ21 σ21 σ21
σ21 σ21 σ2 + σ21 σ21
σ21 σ21 σ21 σ2 + σ21

 (19)
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Heterogeneous Compound Symmetry


σ21 σ2σ1ρ σ3σ1ρ σ4σ1ρ

σ2σ1ρ σ22 σ3σ2ρ σ4σ2ρ
σ3σ1ρ σ3σ2ρ σ23 σ4σ3ρ
σ4σ1ρ σ4σ2ρ σ4σ3ρ σ24

 (20)
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Autoregressive


σ2 σ2ρ σ2ρ2 σ2ρ3

σ2ρ σ2 σ2ρ σ2ρ2

σ2ρ2 σ2ρ σ2 σ2ρ
σ2ρ3 σ2ρ2 σ2ρ σ2

 (21)
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Heterogeneous Autoregressive


σ21 σ2σ1ρ σ3σ1ρ

2 σ4σ1ρ
3

σ2σ1ρ σ22 σ3σ2ρ σ4σ2ρ
2

σ3σ1ρ
2 σ3σ2ρ σ23 σ4σ3ρ

σ4σ1ρ
3 σ4σ2ρ

2 σ4σ3ρ σ24

 (22)
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Toeplitz


σ2 σ1 σ2 σ3
σ1 σ2 σ1 σ2
σ2 σ1 σ2 σ1
σ3 σ2 σ1 σ2

 (23)
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Fixed Effects Modeling of Composite Residual Structure
with R

Using the R function gls in the nlme library, we can model the
covariance structure of a fixed-effects linear model. Pinheiro
and Bates (2000) refer to this as the extended linear model,
because it replaces the normal assumption that the εi have a
covariance matrix of σ2I with a more complex model. This
model may assume that variances are equal, or it may allow
them to be unequal. Various models for the correlation
structure of the errors are supported. This option is discussed
in detail by Pinheiro and Bates (2000), Section 5.4.
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Mixed Effects Modeling with Nonstandard Residual
Covariance Structure

The R function lme in the nlme library has a facility for
modeling the covariance structure of residuals within the mixed
model framework. This capability is discussed in Chapter 5 of
Pinheiro and Bates (2000).

James H. Steiger Modeling Residual Covariance Structure


	Introduction
	A Composite Growth Curve Model for Cognitive Performance
	Deriving the Residual Covariance Structure
	The Residual Vector
	Variance of a Residual
	Covariance of Two Composite Residuals
	Block-Diagonal Covariance Matrix

	Modeling the Residual Covariance Structure
	Error Covariance Structure in Matrix Format

	Which Residual Structure?
	Fixed Effects Only
	Fixed and Random Effects — Two Modeling Choices

	Some Common Covariance Structures
	Unstructured
	Compound Symmetry
	Heterogeneous Compound Symmetry
	Autoregressive
	Heterogeneous Autoregressive
	Toeplitz

	Fixed Effects Modeling of Composite Residual Structure with R
	Mixed Effects Modeling with Nonstandard Residual Covariance Structure

