
2 Subscript and Summation Notation

2.1 Variable and Subscript Notation

Most of the calculations we perform in statistics are repetitive operations on lists of

numbers. For example, we compute the sum of a set of numbers, or the sum of the

squares of the numbers, in many statistical formulas. We need an efficient notation

for talking about such operations in the abstract.

2.1.1 Single Subscript Notation

In the simplest situations, we have one or two (or perhaps three) lists, and we wish

to refer to particular numbers in those lists. This is the kind of situation you have

probably already dealt with repeatedly in your undergraduate course in statistics.

In this case, we represent numbers in a list with a notation of the form

Xi

The symbol X is the “list name,” or the name of the variable represented by the

numbers on the list. The symbol i is a “subscript,” or “position indicator.” It

indicates which number in the list, starting from the top, you are referring to.

For example, if the X list consists of the numbers 11, 3, 12, 7, 19 the value of X3

would be 12, because this is the third number (counting from the top) in the X list.

Single subscript notation extends naturally to a situation where there are two or

more lists. For example suppose a course has 4 students, and they take two exams.

The first exam could be given the variable name X, the second Y, as in the table

below.
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Student X Y
Smith 87 85

Chow 65 66

Benedetti 83 90

Abdul 92 97

In the above list, Chow’s grade of 66 on the second exam is Y2. Abdul’s 92 on

the first exam is X4.

Using different variable names to stand for each list works well when there are

only a few lists, but it can be awkward for two reasons.

• In some cases the number of lists can become large. This arises quite frequently

in some branches of psychology, when personality inventory data are recorded. In

such cases, there might be literally hundreds of variables for each subject.

• When general theoretical results are being developed, we often wish to express

the notion of some operation being performed “over all of the lists.” It is difficult

to express such ideas efficiently when each list is represented by a different letter,

and the available list of letters is limited.

2.1.2 Double Subscript Notation

To combat the difficulties that arise when more than one list is being discussed, it

is often more convenient to use double subscript notation. In this notation, data

are presented in a rectangular array. The data are indicated with a single variable

name, and two subscripts, like this

Xij

The first subscript refers to the row that the particular value is in, the second

subscript refers to the column. For example here

X11 X12 X13

X21 X22 X23

X31 X32 X33

is a matrix, a rectangular array containing 3 rows and 3 columns. You count down to

get to a particular row, and you count across from left to right to get to a particular

column.
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Example 2.1.1 Test your understanding of double subscript notation by

finding X23 and X31 in the table below.

1 6 32

3 23 112

12 21 34

53 8 64

4 14 5

Solution Go down to the second row and over to the third column to find

X23 = 112.Go down to the third row and stay in the first column to find

X31 = 12.

Example 2.1.2 Give the row and column subscript form for the number 14

in the table in Example 2.1.1.

Solution We find the number 14 in the 5th row and the 2nd column. Hence

it is X52.

When there are more than 9 elements in a row or column, this notation can

be ambiguous. Suppose, for example, you wanted the element from the 11th row

and the 2nd column of a 20 by 20 data array. If you write X112, it could mean the

element in row 1 and column 12. How do you handle this?

Oddly enough, you hardly ever see this question addressed in textbooks! Textbook

“training” examples tend to have only a few rows and/or columns. Obviously you’ve

got to do something. Generally, anything goes in these kinds of situations so long as

it is very unlikely that anyone will be confused. We have several options. One is to

separate the subscripts with spaces, like this

X11 2

Another option is to surround each subscript with brackets, like this

X[11][2]
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Unfortunately, this choice produces ambiguities of its own when adopted as a general

choice, because in some types of expressions, the notation might imply multiplication

of subscripts, while in other situations it would be perfectly acceptable. Here is a

notation that works well across a wide variety of situations

X11,2

This is the notation we will employ in situations where there are more than 9 rows

or columns in a two-dimensional data array.
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Exercises for Section 2.1
X Y Z W
11 21 19 17
4 10 12 24

16 15 14 13

Table 2.1: Sample Data on 4 Variables

(1) Given the data in Table 2.1, what is the proper variable and subscript designation of

the value 24? à
(2) In the same data set as in Exercise 1, what is the proper variable and subscript

designation of the value 16? à X =

 1 7 4
5 8 6
6 3 9


Table 2.2: Sample Data Matrix X(3) In Table 2.2, which gives numerical values for a matrix X what is the double-subscript

designation for the number whose value is 6? à
(4) In Table 2.2, what is the numerical value of X22? à
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2.2 Single Summation Notation

Many statistical formulas involve repetitive summing operations. Consequently, we

need a general notation for expressing such operations. You may be already familiar

with this notation from an undergraduate course, but you may not be aware of its

full potential. We shall begin with some simple examples, and work through to some

that are more complex and challenging. Many summation expressions involve just a

single summation operator. They have the following general form

n

∑
i=1

Xi

In the above expression, the i is the summation index, 1 is the start value, n is the

stop value. Summation notation works according to the following rules.

(a) The summation operator governs everything to its right. up to a natural break

point in the expression. The break point is usually obvious from standard rules

for algebraic expressions, or other aspects of the notation, and we will discuss

this point further below.

(b) To evaluate an expression, begin by setting the summation index equal to the

start value. Then evaluate the algebraic expression governed by the summation

sign.

(c) Increase the value of the summation index by 1. Evaluate the expression governed

by the summation sign again, and add the result to the previous value.

(d) Keep repeating step 3 until the expression has been evaluated and added for the

stop value. At that point the evaluation is complete, and you stop.

Example 2.2.1 Suppose our list has just 5 numbers, and they are 1,3,2,5,6.

Evaluate
5

∑
i=1

X2
i



subscript and summation notation 19

Solution In this case, we begin by setting i equal to 1, and evaluating X2
1.

Since X1 = 1, our first evaluation produces a value of 1.

Next, we set i equal to 2, and evaluate X2
2, obtaining 9, which we add to

the previous result of 1. We continue in this manner, obtaining[
12 + 32 + 22 + 52 + 62

]
= 75

The order of operations is as important in summation expressions as in other

mathematical notation. In the following example, we compute the square of the sum

of the numbers in our list.

Example 2.2.2 Using the same numbers as in Example 2.2.1, evaluate the

following expression: [
5

∑
i=1

Xi

]2

Solution In this case, we add up all the numbers, then square the result. We

obtain

[1 + 2 + 3 + 5 + 6]2 = 172 = 289

2.3 The Algebra of Summations

Many facts about the way lists of numbers behave can be derived using some basic

rules of summation algebra. These rules are simple yet powerful. In this section, we

develop these rules and employ them immediately to prove our first (very simple)

statistical result.

2.3.1 The First Constant Rule

The first rule is based on a fact that you first learned when you were around 8 years

old — multiplication is simply repeated addition. That is, to compute 3 times 5,

you compute 5 + 5 + 5.

Another way of viewing this fact is that, if you add a constant a certain number
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of times, you have multiplied the constant by the number of times it was added.

Symbolically, we express the result as

y

∑
i=x

a = (y− x + 1)a (2.1)

This rule, which we will refer to as “The First Constant Rule of Summation Algebra,”

is used in many derivations to eliminate summation signs and make an expression

simpler. Note that, if the summation index runs from x to y, the constant is added

y− x + 1 times, not y− x times! For example, if the summation index runs from

2 to 3, you go through 2 cycles, not 1. Even experienced practitioners forget this

on occasion, and assume that a summation index running from x to y results in

y− x cycles. This “off by one” error plagues computer programmers in a number of

contexts. It is unlikely that you have seen the First Constant Rule of Summation

Algebra stated in the form of Equation 2.1. It is much more likely that you have

seen the following less general version which applies when the starting index value is

1.

n

∑
i=1

a = na (2.2)

One of the problems beginners experience with this rule and its application is that

the form of Equation 2.2 is deceptively simple. The equation actually says more

than it appears to at first glance. This happens frequently in statistics, and so we

will examine the phenomenon carefully here. The most important thing to realize is

that the symbol a in Equations 2.1 and 2.2is a placeholder. It actually stands for

any expression, no matter how complicated, that does not vary as a function of the

summation index (i in this case). Any algebraic expression that does not contain an

i or can be reduced to such an expression falls under the rubric of the First Constant

Rule. In our first example, the application of the rule is straightforward, because

the expression governed by the summation operator is so simple that it is difficult

not to notice that it is a constant.



subscript and summation notation 21

Example 2.3.1 Application of the First Constant Rule.

3

∑
i=2

2 = ?

Solution In this case, we are adding the number 2 twice, so the answer is 4.

We can also solve by direct application of Equation 2.1. This leads to

3

∑
i=2

2 = (3− 2 + 1) 2 = (2)2 = 4

In our second example, the expression governed by the summation operator is

much more complex than in Example 2.3.1, but it is still a constant.

Example 2.3.2 Applying the First Constant Rule to a Complex Ex-

pression.
n

∑
i=1

(
2Xj − 5

)2
= ?

Solution In this case, the expression is visually more complex then in Example

2.3.1. This tends to obscure the fact that it is constant with respect to the

summation index i. However, the expression does not contain an i, so the First

Constant Rule applies. The expression reduces to

n
(
2Xj − 5

)2

2.3.2 The Second Constant Rule

The second rule of summation algebra, like the first, derives from a principle we

learned very early in our educational careers. When we were first learning algebra,

we discovered that a common multiple could be factored out of additive expressions.

For example,

2x + 2y = 2 (x + y)
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or

8w + 8x + 8y = 8 (w + x + y)

Consequently, we may write

n

∑
i=1

aXi = a
n

∑
i=1

Xi (2.3)

Again, the rule actually says more than it appears to. At first glance, it appears

to be a rule about multiplication. You can move a factorable constant outside of a

summation operator. However, the term a could also stand for a fraction, and so the

rule also applies to factorable divisors in the summation expression. The following

two examples explore these applications of the rule.

Example 2.3.3 Factoring a Common Multiple.

n

∑
i=1

6yXi = ?

Solution In this case the term 6y can be factored from the expression governed

by the summation operator. Consequently, it may be moved outside the

summation sign as follows:

6y
n

∑
i=1

Xi

Example 2.3.4 Factoring a Common Divisor.

n

∑
i=1

(
Xi
2

)
= ?

Solution Here the common divisor may be factored out, yielding

1
2

n

∑
i=1

Xi
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2.3.3 The Distributive Rule

The third rule of summation algebra relates to a third notion that we learned early in

our mathematics education — when numbers are added or subtracted, the ordering

of addition and/or subtraction doesn’t matter. For example

(1 + 2) + (3 + 4) = (1 + 2 + 3 + 4)

Consequently, in summation notation, we have

n

∑
i=1

(Xi + Yi) =
n

∑
i=1

Xi +
n

∑
i=1

Yi (2.4)

Again, the rule might appear to be saying less at first glance than it is, since the

terms on the left may be either positive or negative. Hence Equation 2.4 implies

also that

n

∑
i=1

(Xi −Yi) =
n

∑
i=1

Xi −
n

∑
i=1

Yi (2.5)

2.3.4 Proving a Result With Summation Algebra

In this section, we prove a basic Theorem using the rules of summation algebra.

Before we begin the proof, we must introduce some basic definitions.

Definition The sample mean, or arithmetic average of a list of n numbers

is defined as

X• =
1
n

n

∑
i=1

Xi (2.6)

Definition The deviation score dxi corresponding to the raw score Xi is

defined as

dxi = Xi − X• (2.7)
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i.e.,the position of Xi relative to the group average.

Frequently we shall refer to the scores Xi as we originally find them as the raw

scores. The deviation score corresponding to a particular raw score expresses where

that score is relative to the sample mean, or group average. So, for example, if

a person’s deviation score on an examination is +2, it means the person was two

points above the group average. In many contexts, the group average will vary for

reasons that are in some sense irrelevant to the measurement task at hand. For

example, one professor’s exam may be easier than another’s, and so the class average

may be higher. In such situations, if we have to compare grades for students in the

two classes, their deviation scores may be a better performance indicator than their

raw scores. By referencing the scores to the mean within their group, you factor out

group mean differences.

Example 2.3.5 Calculating Deviation Scores. If you work with deviation

scores for any length of time, you quickly notice that they seem to inevitably

add up to zero. For example, consider the following simple set of scores Xi and

their corresponding deviation scores dxi. We obtain the deviation scores by

subtracting the mean of the X scores, 3, from each X.

X dx
5 +2
4 +1
3 0
2 −1
1 −2

You may verify easily that, in the above numerical example, the deviation scores

sum to zero. In the next Theorem, we use the rules of summation algebra to prove

that, for any list of numbers, the deviation scores must always add up to zero. At

first, you may find the notion of having to prove results in statistics an intimidating

departure from the approach taken in your undergraduate training. However, we

present proofs in this text to try to get you to accept the idea that you can actually

understand where statistical techniques came from and why, rather than having



subscript and summation notation 25

to simply accept these techniques as something to memorize. Rest assured that a

generation of graduate and undergraduate students in my courses have mastered

all of these proofs. You can do it too. Follow the first few proofs closely, and you

should get the hang of it quickly.

Theorem 2.3.6 (The Sum of Deviation Scores) For any list of n num-

bers, The sum of deviation scores is always zero. That is

n

∑
i=1

dxi = 0 (2.8)

Proof The proof that follows is typical of many of the summation algebra

proofs that appear in this book. It begins by restating an equality relationship

that is to be proven in mathematical notation. Next, the left side of the equation

is expanded in straightforward fashion. Then, available results are applied

to simplify the expression and obtain the quantity on the right side of the

original equation. Most of the proofs in this book involve mathematical insight

or creativity only at one or two key points. I will try to make clear where the

difficult points are in each proof.

We begin by restating the quantity we wish to prove is zero.

n

∑
i=1

dxi =?

Next we substitute the definition of a deviation score (Equation 2.7) into

the formula, obtaining

n

∑
i=1

dxi =
n

∑
i=1

(
Xi − X•

)
At this point, we employ the Distributive Rule of Summation Algebra (Equa-

tion 2.4) to distribute the summation sign to the two terms on the right side of
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the expression.
n

∑
i=1

(
Xi − X•

)
=

n

∑
i=1

Xi −
n

∑
i=1

X•

One of the two terms on the right involves summing an expression that does

not contain an i, and so the First Constant Rule (Equation 2.2) applies. The

expression becomes

n

∑
i=1

Xi −
n

∑
i=1

X• =
n

∑
i=1

Xi − nX•

Next we need to recall the definition of the sample mean (Equation 2.6). Multiply

both sides of the definition by n, and one finds that

nX• =
n

∑
i=1

Xi

so we obtain
n

∑
i=1

Xi − nX• =
n

∑
i=1

Xi −
n

∑
i=1

Xi = 0

This completes our proof.

2.4 Double and Multiple Summation Expressions

So far, we have developed single and double subscript notation, and an algebra of

summations. We have proved a simple but important statistical result using the

notation and algebra. However, the algebra of summations has been presented and

developed with respect to summation expressions involving only a single summation

sign and a single subscript index. These examples are useful, but they fail to convey

the full power and complexity of summation and subscript notation. In this section,

we explore the use of summation and subscript notation in more complex expressions,

beginning with simple expressions you probably saw in your undergraduate course,

and working through to more complicated expressions.
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2.4.1 Interpreting Double and Multiple Summation Expressions

First, we explore the basics. How does one interpret what one sees in an expression

involving two or more summation indices? In the pure mathematical sense, we

actually know already. That is, the four rules for summation operators given in

2.2 actually cover the case of multiple summation indices. However, there are

many simplification strategies that we can employ when examining summation

expressions, so simply stating the mathematical truth would be inadequate in this

case. Consequently, after examining multiple summation expressions from the

strict mathematical standpoint, we will go on to describe some of the simplification

strategies you will find useful in practice for interpreting statistical formulas that

use summations.

Example 2.4.1 (A Simple Double Summation Expression.) Consider

the following expression
3

∑
i=1

3

∑
j=1

Xij

What does this expression mean?

Solution If we review the rules for evaluating summation expressions in 2.2,

we discover that these rules handle the situation quite nicely. Rule 1 says that a

summation operator governs everything to its right. That means that, starting

from the left of the expression, the first summation operator, the one with i as

its index, governs the entire subexpression to its right. To remind us of that, I

will surround this expression with large parentheses.

3

∑
i=1

(
3

∑
j=1

Xij

)

Now examine the second summation operator, with summation index j. This

operator governs the entire subexpression to its right. To remind us of that, I

will surround this subexpression with brackets.

3

∑
i=1

(
3

∑
j=1

[
Xij

])
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We are now ready to evaluate the expression. We begin, according to rule 2

of 2.2, by setting the summation index i to one. According to rule 3, we then

evaluate the entire expression governed by the first summation operator. This

is the expression contained in large parentheses. This expression is itself a

summation expression. Evaluating this expression therefore involves examining

and evaluating a second summation operator. We must evalute the expression(
3

∑
j=1

[
Xij

])

while the summation index controlled by the first operator is held constant at

the value i = 1. We must, therefore, evaluate the expression(
3

∑
j=1

[
X1j

])

This expression is a routine single summation expression, much like the ones

we have already evaluated. To evaluate it, we run the second summation index

j over the values from 1 to 3, each time evaluating the expression governed by

the second summation sign, and adding the result. We obtain([
X11
]

+
[
X12
]

+
[
X13
])

Note that, to help you follow the logic of the summation operation, I have

deliberately left the brackets around the subexpressions. At this point, we have

evaluated the entire subexpression governed by the first summation operator,

so we are ready for the next step.

Next, we set the index of the first summation operator i to its next value.

We set i = 2 and evaluate the subexpression governed by the first summation

index again. At this point, we are evaluating the expression(
3

∑
j=1

[
X2j
])
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This evaluates to ([
X21
]

+
[
X22
]

+
[
X23
])

and so at this point, the entire expression has been evaluated as([
X11
]

+
[
X12
]

+
[
X13
])

+
([

X21
]

+
[
X22
]

+
[
X23
])

If we continue the process for i = 3, we obtain([
X11
]

+
[
X12
]

+
[
X13
])

+
([

X21
]

+
[
X22
]

+
[
X23
])

+
([

X31
]

+
[
X32
]

+
[
X33
])

Both summation indices have reached their upper limits of 3, so the evaluation

of the expression is now complete. To summarize, evaluation of expressions

involving multiple summation signs involves the same rules as those that

govern evaluation of single summation signs. Each summation operator governs

everything in the expression to its right, including all summation signs.

2.4.2 The Odometer Metaphor

The mathematical interpretation of multiple summation operations is, in principle

at least, straightforward. However, the notation would not be very useful if it always

took us as much time to decode an expression as the previous example required. We

want to devise some strategies that will allow us to decode the simpler expressions

quickly without sacrificing accuracy. If an expression is challenging, one can always

apply the strategy of the previous section and work through the expression slowly

and carefully.

There are several metaphors which beginners find useful for decoding expressions

involving several summations. The first such metaphor is one I call the “odometer

metaphor.” Consider a typical trip odometer on an automobile. As you drive down

the road, the digits move from 0 to 9, with the rightmost digit moving first. As the

rightmost digit reaches a “stop value” of 9, the next digit to the left increases by 1,
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and the right digit resets to a “starting value” of zero. For example,

0 0 8

0 0 9

0 1 0

If we examine the behavior of the indices i and j in the summation expression we

evaluated in Example 2.4.1 we see that they behaved very similarly to the numbers

on an odometer. The only differences are that the “start value” and “stop value” for

the summation indices are 1 and 3, while the “start value” and “stop value” on the

odometer are 0 and 9, respectively. Simply review the values taken on by i and j, as

shown in the table below.

i 1 1 1 2 2 2 3 3 3

j 1 2 3 1 2 3 1 2 3

As j hits its stop value, it resets to 1 and i “clicks off” to the next value, just like an

odometer. The odometer metaphor is particularly useful when you are evaluating

simple summation expressions.

2.4.3 The Cartesian Product Metaphor

Many of my students have found another metaphor particularly useful for evaluating

summation expressions.

Definition The Cartesian product of two sets A and B is the set of all

ordered pairs of values i and j where i is a member of set A and j is a member

of set B.

The Cartesian Product notion can serve us well in interpreting summation expressions.

Consider again the expression from Example 2.4.1. Another way of evaluating the

expression is as follows:

(a) Consider each summation sign and record the range of subscript values it allows.

(In this case, the ranges are 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.)
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(b) Remove the summation signs from the expression (but leave appropriate paren-

theses) to yield a new expression S. Call this the “reduced expression.”

(c) Evaluate and sum expression S for all combinations of the subscript indices (i
and j in this case) such that i is in the range for the first index and j is in the

range for the second index.

In other words, the summation expression is the sum of the versions of the reduced

expression produced by the Cartesian product of the ranges. In the following

example, we see how this approach works with the expression from Example 2.4.1.

Example 2.4.2 (Applying the Cartesian Product Metaphor) Evaluate

3

∑
i=1

3

∑
j=1

Xij

using the “Cartesian product” approach.

Solution First create the “reduced expression” by installing the parentheses

but removing the summation signs. One obtains

(
[
Xij
]
)

Now simply evaluate this expression for all combinations of integer subscript

values that satisfy 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. The result is([
X11
]

+
[
X12
]

+
[
X13
])

+
([

X21
]

+
[
X22
]

+
[
X23
])

+
([

X31
]

+
[
X32
]

+
[
X33
])

2.4.4 Applying Double Summations to Rectangular Arrays

One of the most common applications of double summation expressions is to rectan-

gular arrays of numbers, in conjunction with double subscript notation. Consider,

Student Exam 1 Exam 2 Exam 3

Joe 87 75 92
Fred 76 78 81

Mary 98 93 99
Table 2.3: Scores for 3 Students on 3 Exams

for example the scores of 3 students on 3 exams, as presented in Table 2.3.
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In the following examples, we study how double summation notation can be used

to pick out specified subarrays from this array.

Example 2.4.3 (Summing Lower Trangular Elements of an Array) Eval-

uate the following expression numerically, using the data in Table 2.3

3

∑
i=1

i

∑
j=1

Xij

Solution This expression introduces a new wrinkle to summation notation.

Note that the outer (leftmost) summation index controls the stop value of the

inner (rightmost) summation operator. Consequently, the end value of the j
index varies at different points in the evaluation. If we apply the “odometer

metaphor” to the expression, we begin by setting i = 1 and stepping j through

the values from 1 to i, or in this case from 1 to 1. For the first loop of the

expression, we end up with simply ([
X11
])

Next, we set i = 2 and step j through the values from 1 to i, or in this case

from 1 to 2. Evaluating the expression, we now have([
X11
])

+
([

X21 + X22
])

Finally, we set i = 3 and step j through the values from 1 to i, or in this case

from 1 to 3. Evaluating the expression, we end up with the final result([
X11
])

+
([

X21 + X22
])

+
([

X31 + X32 + X33
])

For this expression, the“intersection metaphor”can provide us with considerable

insight. The expression is telling us to sum Xij values for 1 ≤ i ≤ 3, i.e., for all

available values of i, and for values of j that run from 1 to the current value of

i, in other words for all values of j less than or equal to i. If we remember that

i is the row subscript and j the column subscript, it becomes apparent that

the notation is telling us to sum all the elements for which the row number is

greater than or equal to the column number.
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In Table 2.4 we show the data matrix with the lower triangular elements that are

summed in boldface.

The elements in boldface are sometimes called the “lower triangular” elements of

the data array. They form a triangular shape.

Student Exam 1 Exam 2 Exam 3

Joe 87 75 92
Fred 76 78 81

Mary 98 93 99
Table 2.4: Lower Triangular ElementsExample 2.4.4 (Summing Upper Triangular Elements of an Array)

Suppose we define the upper triangular elements of a data array to be those

elements for which i is less than or equal to j. Write a double summation

expression to sum the upper triangular elements of the data in Table 2.3. Try

not to look at the solution to this example until you have given it a good try.

Solution The expression we seek is

3

∑
j=1

j

∑
i=1

Xij

You should be able to verify for yourself that this expression sums the appro-

priate values.

Question. Isn’t the ordering of the summation

signs wrong?

Reply. No, not at all, as explained in the text.
This example has a surprising number of subtle lessons to teach us. In my

experience, many students find the solution to this example difficult to achieve, and

the above question is typical. After all, the i comes before j in the subscripting

scheme. Should not the summation signs follow the same order? I often ask such

students “Where did you first get the idea that the summation indices have to follow

a particular ordering?” Many students have this misconception. It apparently stems

from the way students naturally incorporate mathematical ideas that are taught

primarily “by example.” Many students have only been exposed to examples where,

i comes before j both in the summation indices and in the subscripting system.

Ultimately, they form an abstraction, or “mental set,” that implicitly restricts the

possibilities of the notation for them. They see limitations where none exist. Along

these lines, there is another valid solution to the preceding problem. It is

3

∑
i=1

i

∑
j=1

Xji

Notice how changing the position of the j and the i subscripts has changed the result.
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Again, many students will have difficulty seeing or understanding this solution to the

problem, because somewhere along the line they developed the restrictive belief that

the i subscript should always precede the j subscript. Remember, it is the position

of the subscript that determines whether it is referring to a row or a column in a

rectangular array. In this case, by switching the position of the i and j, we made i
refer to a column and j refer to a row.

Example 2.4.5 (Calculating the Trace of a Matrix) The trace of a square

matrix is the sum of the elements Xij for which i = j. For the data in Table

??, compute the trace of the array.

Solution The first solution that comes to mind is something like the following:

3

∑
i=1

i

∑
j=i

Xij

Example 2.4.6 (An Easier Way) However, there is an alternative solution

to Example 2.4.5 that is much simpler, but less obvious. It requires only a

single summation sign. Can you deduce this solution?

Solution The simpler solution often eludes the beginning student, again

because of the mental set problem we discussed above. This solution is

3

∑
i=1

Xii

If you failed to see this solution, it was probably because you were assuming,

implicitly at least, that the two symbols for subscripts of X had to be different. We

are so used to seeing symbols like Xij that it is quite natural to adopt this assumption

after a while. Of course, this assumption is incorrect. These two symbols are merely

placeholders. They can, indeed, be functions of indices. They need not be indices

themselves, as we see in the next example.
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Example 2.4.7 (Summing Elements on a Subdiagonal Strip of an Array)

Write a summation expression, using only a single summation sign, to sum

the elements highlighted in boldface in the data set in Table 2.5.
4 4 5
3 5 23

6 1 7
Table 2.5: Summing Elements on a Subdiagonal
Strip

Solution The numbers in boldface occupy the only positions in the array

where the row subscript is exactly 1 greater than the column subscript. Hence,

one answer is
3

∑
i=2

Xi,i−1

Note how, in this case, one subscript is actually a function of the other.

2.5 Variations in Summation Notation

So far, we have been examining “standard” summation notation. There are many

variations you will observe in different books, or in different sections of the same

book. Here we shall discuss just a few of these variations.

2.5.1 “Reduced” Notation

In many cases, aspects of the notation remain constant throughout a derivation, and

repeating them introduces redundancy, and makes the derivation harder to read. In

such situations, it is quite common to “reduce” the notation by removing redundant

aspects. Here are some examples

Example 2.5.1 (Reduced Notation) Instead of

n

∑
i=1

Xi

write

∑
i

Xi
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or even

∑ X

Since you are summing all the elements of the X array, and this is usually implicit

in the context of the discussion, why add unnecessary visual complication? This

simplified notation is seen frequently in textbooks.

In a similar vein, you will often see something like this

∑
i

∑
j

Xij

instead of
n

∑
i=1

n

∑
j=1

Xij

2.5.2 Single Summation Operators with a Subscript Inclusion Rule

In Example 2.4.4, we used notation like this

3

∑
j=1

j

∑
i=1

Xij

to sum the upper triangular elements of an array. Many books will economize

the notation by using a single summation sign, and placing below it an “inclusion

rule” for the set of i, j subscript pairs to be summed. The above expression says, in

effect, “sum the elements for which j is greater than or equal to i.” The “economized”

notation for saying the same thing is

∑
j≥i

Xij

2.6 Bar-Dot Notation

In this section, we examine a notation that is commonly used to simplify expressions

in the Analysis of Variance.
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2.6.1 Computing Row or Column Sums in a Rectangular Array

Consider the following rectangular array of data. X11 X12 X13

X21 X22 X23

X31 X32 X33


The following expression will sum the elements in the first row.

3

∑
j=1

X1j

Notice how the expression says, in effect. “Stay within the first row, and step across

the columns, summing as you go.”

Suppose you wished to sum the elements in the third column. You would use

3

∑
i=1

Xi3

Computing a row or column sum is an operation that is repeated many times

in routine Analysis of Variance calculations. Looking back at the two preceding

examples, we are struck by the visual inefficiency of basic summation notation for

conveying this simple repetitive operation.

2.6.2 Dot Notation

Dot notation provides a simpler way of conveying the simple notion of summing

across all observations in a particular direction. We introduce the notation here in

the context of two dimensional arrays only. We will return to the notation when we

get to the analysis of variance.

Definition (Dot Notation) Given a rectangular data array with R rows and

C columns. We define

X•j =
R

∑
i=1

Xij
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and

Xi• =
C

∑
j=1

Xij

Dot notation is particularly easy to read, once you get the hang of it. For example,

the “third row sum” is X3•. The “second column sum” is X•2. What makes dot

notation particularly useful is the way that it generalizes effortlessly to a situation

that causes complications for summation notation, namely the case of missing data.

Group 1 Group 2 Group 3

4 4 5

3 6 23
6 7

Table 2.6: Hypothetical Data for

3 Groups of Unequal Size
Consider the data array in 2.6. Suppose this array represented 3 groups, with groups

represented in columns. There are three numbers in the first and third group, but

only two numbers in the second group. Suppose we wished to convey an operation

that involved computing the 3 column sums for these data. In this case, the previous

definition that assumes there are the same numbers of scores in each column cannot

be used, because the number of numbers in a column is not a constant. Instead, we

need a notational device for conveying how many numbers there are in each column.

One common solution is to use the number nj to stand for the number of numbers

in the jth column. In that case, we can still use the notation X•j to stand for the

jth column sum. Here we simply revise the definition as

X•j =

nj

∑
i=1

Xij

With this revised definition, the dot notation achieves new flexibility. One may

use X•j to stand for the jth column sum regardless of the number of numbers in a

particular column. It simply means the sum of however many numbers there are in

the column.

Dot notation generalizes to situations where there are more than two subscript

indices. In these more complex situations, which we will deal with when we begin

discussing the Analysis of Variance, a dot in place of a subscript indicates that all

values of that subscript have been summed over.

2.6.3 Bar-Dot Notation

Besides computing row and column sums, we frequently compute row and column

means in the context of analysis of variance and other statistical operations. A simple
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addition to dot notation allows us to convey this very efficiently.

Definition (Bar Notation) If a bar is placed over a dot notation expression,

it means “divide by the number of numbers that were summed in the dot

expression.” For example, if there are nj numbers in the jth column, we have

X•j =
1
nj

nj

∑
i=1

Xij

Bar dot notation can be used in situations where there are more or less than two

dimensions in the array. For example, suppose we have only one list. The sum of

the numbers is X•, the mean of the numbers X•.

Example 2.6.1 (Column Means) Suppose you have a rectangular data

array, and you wish to compute the mean of the scores in the first column.

Write the expression in bar-dot notation.

Solution

X•1

Example 2.6.2 (Averaging Row Means) Again suppose a rectangular

data array. You wish to compute the average of the means of the first 3 rows.

Write the expression using a summation operator and bar-dot notation.

Solution
1
3

3

∑
i=1

Xi•


