Homework 2

Psychology 312

Instructions. Feel free to email me for hints if you get stumped.

1. Suppose you have a vector \boldsymbol{x} , and that \boldsymbol{x} has at least one nonzero element. Define $\boldsymbol{P}_{\boldsymbol{x}} = \boldsymbol{x}(\boldsymbol{x'x})^{-1}\boldsymbol{x'}$. Note that $\boldsymbol{x'x}$ is a scalar, so $\boldsymbol{P}_{\boldsymbol{x}}$ may also be written as

$$oldsymbol{P_x} = rac{oldsymbol{xx'}}{oldsymbol{x'x}} = \left(rac{1}{oldsymbol{x'x}}
ight)oldsymbol{xx'}$$

 P_x is known as the "orthogonal projector for x." Define $Q_x = I - P_x$. Given the above definitions, answer the following:

- (a) Prove that P_x is idempotent.
- (b) Prove that P_x is symmetric.
- (c) Now consider any other non-null vector y. Prove that $a = P_x y$ is collinear with x i.e., that $P_x y$ can be written in the form cx for some scalar c.
- (d) Prove that $Q_x = I P_x$ is also symmetric and idempotent.
- (e) Consider the vector $\boldsymbol{b} = \boldsymbol{Q}_{\boldsymbol{x}}\boldsymbol{y}$. Prove that \boldsymbol{b} is orthogonal to $\boldsymbol{a} = \boldsymbol{P}_{\boldsymbol{x}}\boldsymbol{y}$, i.e., $\boldsymbol{a}'\boldsymbol{b} = \boldsymbol{b}'\boldsymbol{a} = 0$, and that \boldsymbol{b} is also orthogonal to \boldsymbol{x} .
- (f) Prove that a + b = y, thus showing that P_x and Q_x can be used to break a vector y into two component vectors, one orthogonal to x, one collinear with x.
- (g) Consider a data vector \boldsymbol{x} , and $\boldsymbol{1}$, a conformable "summing vector" of ones . Explain why \boldsymbol{x} is in deviation score form if and only if $\mathbf{1}'\boldsymbol{x} = 0$.
- (h) Consider a data matrix X. Prove that if the columns of X are in deviation score form, any linear combination of the variables in X, i.e., y = Xb, will also be in deviation score form.
- (i) Consider Q_1 . Explain succinctly (in terms of what you discovered from problems a-h) why Q_1 carries any vector of scores into deviation score form.
- (j) Using R, create a vector \boldsymbol{x} such that $\boldsymbol{x}' = [2, -3, 2, 2, 0]$. Using this \boldsymbol{x} , create $\boldsymbol{P}_{\boldsymbol{x}}$ and $\boldsymbol{Q}_{\boldsymbol{x}}$, create another vector \boldsymbol{y} , such that $\boldsymbol{y}' = [1, 2, 3, 4, 5]$, and then demonstrate numerically all the properties proven in problems a-h.