The Scalar Algebra of

Means, Covariances, and
Correlations

In this chapter, we review the definitions of some key statistical concepts:
means, covariances, and correlations. We show how the means, variances,
covariances, and correlations of variables are related when the variables them-
selves are connected by one or more linear equations by developing the linear
combination and transformation rules. These rules, which hold both for lists
of numbers and random variables, form the algebraic foundations for regres-
sion analysis, factor analysis, and SEM.

3.1 MEANS, VARIANCES, COVARIANCES, AND CORRELATIONS

In this section, we quickly review the basic definitions of the statistical quan-
tities at the heart of structural equation modeling.

3.1.1 Means

The mean of a statistical population is simply the arithmetic average of all
the numbers in the population. Usually, we model statistical populations as
random variables with a particular statistical distribution. Since this is not
a course in probability theory, we will not review the formal definition of a
random variable, but rather use a very informal notion of such a variable as a
process that generates numbers according to a specifiable system. The mean
of the population can be represented as the expected value of the random
variable.
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Definition 3.1 (Expected Value of a Random Variable) The expected
value of a random variable X, denoted £(X), is the long run average of the numbers
generated by the random variable X.

This definition will prove adequate for our purposes in this text, although
the veteran of a course or two in statistics undoubtedly knows the formal
definitions in terms of sums and integrals.

The arithmetic average of a sample of numbers taken from some statistical
population is referred to as the sample mean. This was defined already in
section 2.1.

3.1.2 Deviation Scores

The deviation score plays an important role in statistical formulas. The defi-
nitions are quite similar, for the sample and the population. In each case, the
deviation score is simply the difference between the score and the mean.

Deviation scores in a statistical population are obtained by subtracting
the population mean from every score in the population. If the population is
modeled with a random variable, the random variable is converted to deviation
score form by subtracting the population mean from each observation, as
described in the following definition.

Definition 3.2 (Deviation Score Random Variable) The deviation score
form of a random variable X is defined as [dX] = X — £(X).

Sample deviation scores were defined in Definition 2.2.

3.2 LINEAR TRANSFORMATION RULES

The linear transformation is an important concept in statistics, because many
elementary statistical formulas involve linear transformations.

Definition 3.3 (Linear Transformation) Suppose we have two variables,
X and Y, representing either random variables or two lists of numbers. Suppose
furthermore that the Y scores can be expressed as linear functions of the X scores,
that is, y; = ax; + b for some constants a and b. Then we say that Y is a linear
transformation (or “linear transform”) of X. If the multiplicative constant a is
positive, then the linear transformation is order-preserving.

3.2.1 Linear Transform Rules for Means

Both sample and population means behave in a predictable and convenient
way if one variable is a linear transformation of the other.
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Theorem 3.1 (The Mean of a Linear Transform) Let Y and X repre-
sent two lists of N numbers. If, for each y;, we have y; = ax; + b, then
Yo = 0T +b. If Y and X represent random variables, and if Y = aX + b,
then E(Y) = a&(X) +b

Proof. For lists of numbers, we simply substitute definitions and employ
elementary summation algebra. That is,

o= MY

N

= (1/N) Z(azi +b)

i=1

N
= (1/N) Zaml + (1/N) Z
i=1

= 1/Nle (1/N)N
= ax.+b

The second line above follows from the distributive rule of summation al-
gebra (Result 2.4, page 16). The third line uses the second constant rule of
summation algebra Result 2.3, page 15, for the left term, and the first con-
stant rule Result 2.1, page 13, for the right. Structurally similar proofs hold
both for discrete and continuous random variables, and are given in most el-
ementary mathematical statistics texts. For brevity, we will omit them here.
O

Equation 3.1 actually includes four fundamental rules about the sample
mean as special cases. First, by letting b = 0 and remembering that a can
represent either multiplication or division by a constant, we see that multi-
plying or dividing a variable (or every number in a sample) by a constant
multiplies or divides its mean by the same constant. Second, by letting a = 1,
and recalling that b can represent either addition or subtraction, we see that
adding or subtracting a constant from a variable adds or subtracts that con-
stant from the mean of that variable.

3.2.2 Variances and Standard Deviations

The variance of a statistical sample or population is a measure of how far the
numbers are spread out around the mean. Since the deviation score reflects
distance from the mean, perhaps the two most obvious measures of spread
are the average absolute deviation and the average squared deviation. For
reasons of mathematical tractability, the latter is much preferred by inferential
statisticians.
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Definition 3.4 (Population Variance) The variance of a statistical pop-
ulation, denoted Var(X) or 0%, is the average squared deviation score in that

population. Hence,
ox =& (X —E(X))%.

An important relationship, which we give here without proof, is

Result 3.1 (Population Variance Computational Formula)

(£(X))* 3.1

12

0% = & (X 2) —

= £(X?) -

Definition 3.5 (The Population Standard Deviation) The population
standard deviation is the square root of the population variance, i.e.,

ox =/o%

The natural transfer of the notion of a population variance to a sample
statistic would be to simply compute, for a sample of N numbers, the average
squared (sample) deviation score. Unfortunately, such an estimate tends to
be, on average, lower than the population variance, i.e., negatively biased. To
correct this bias, we divide the sum of squared deviations by N — 1, instead
of N.

Definition 3.6 (The Sample Variance) The sample variance for a set of N
scores on the variable X is defined as

Sk =1/(N=1)) (@ ~7)’

As an elementary exercise in summation algebra, it can be shown that the sample
variance may also be computed via the following equivalent, but more convenient
formula:
N (EN 2
i=1 962)
Sk =1/(N-1) | Yoat - AT

=1

Definition 3.7 (The Sample Standard Deviation) The sample standard
deviation is the square root of the sample variance, i.e.,

Sx = /5%
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3.2.3 Linear Transform Rules for Variances and Standard Deviations

In this section, we examine the effect of a linear transformation on the variance
and standard deviation. Since both the variance and standard deviation are
measures on deviation scores, we begin by investigating the effect of a linear
transformation of raw scores on the corresponding deviation scores. We find
that the multiplicative constant “comes straight through” in the deviation
scores, while an additive or subtractive constant has no effect on deviation
scores.

Result 3.2 (Linear Transforms and Deviation Scores) Suppose a vari-
able X is is transformed linearly into a variable Y, i.e., Y = aX +b. Then

the Y deviation scores must relate to the X deviation scores via the equation
[dY] = a[dX].

Proof. First, consider the case of sets of N scores. If y; = ax; + b, then
(ax; +b) — 7,
(az; + b) — (aTe + b) [Theorem 3.1]

ar; +b—aTe — b

= a(x; —T)
= aldz];

Next, consider the case of random variables. We have

[dY] = Y —=£E()

aX +b—a€(X)+ b [Theorem 3.1]
a(X — £(X))

= al[dX]

This completes the proof. O

A simple numerical example will help “concretize” these results. Consider
the original set of scores shown in Table 3.1. Their deviation score equivalents
are —1, 0, and +1, as shown. Suppose we generate a new set of Y scores using
the equation Y = 2X + 5. The new deviation scores are twice the old set of
deviation scores. The multiplicative constant 2 has an effect on the deviation
scores, but the additive constant 5 does not.

From the preceding results, it is easy to deduce the effect of a linear trans-
formation on the variance and standard deviation. Since additive constants
have no effect on deviation scores, they cannot affect either the variance or
the standard deviation. On the other hand, multiplicative constants constants
“come straight through” in the deviation scores, and this is reflected in the
standard deviation and the variance.
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[dX] X Y =2X+5 [dY]

+1 3 11 +2
0 2 9 0
-1 1 7 -2

Table 3.1 Effect of a Linear Transform on Deviation Scores

Theorem 3.2 (Effect of a LT on the Variance and SD) Suppose a vari-
able X is transformed into Y wvia the linear transform Y = aX +b. Then, for
random variables, the following results hold.

oy = |alox

0% = a0}

Similar results hold for samples of N numbers, i.e.,
Sy = |a|Sx
82 = 252
Proof. Consider the case of the variance of sample scores. By definition,

N

S /(N —1)) [dy]?

1

.
Il

N

= 1/(N-1)> (a[dy];)* (from Result 3.2)
z]:vl

= 1/(N - 1)Za2[dx]?
=1 N

= a (1/(N )Z[dx] )

= a’S%
For random variables, we have
of = E(Y -£&(Y))?
E(aX +b—E(aX +1))?
E(aX +b— (a&(X) +b))? (from Theorem 3.1)

= &E(aX +b—al(X) - b)*
= &(aX — a5(X))2
= &(a*(X —&(X))?) (from Theorem 3.1)
= a?6(X - £(X))?
202

— a'X O
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3.2.4 Standard Scores

Having deduced the effect of a linear transformation on the mean and variance
of a random variable or a set of sample scores, we are now better equipped to
understand the notion of “standard scores.” Standard scores are scores that
have a particular desired mean and standard deviation. So long as a set of
scores are not all equal, it is always possible to transform them, by a linear
transformation, so that they have a particular desired mean and standard
deviation.

Result 3.3 (Linear Standardization Rules) Suppose we restrict ourselves
to the class of order-preserving linear transformations, of the formY = aX+0,

with a > 0. If a set of scores currently has mean To and standard deviation

Sx, and we wish the scores to have a mean y, and standard deviation Sy, we

can achieve the desired result with a linear transformation with

_SY

“7 5

and
b=1vy, —ax,

Similar rules hold for random wvariables, i.e., a random variable X with
mean px and standard deviation ox may be linearly transformed into a ran-
dom variable Y with mean py and standard deviation oy by using

Oy
a=—
ox
and
b=puy —apx

Example 3.1 (Rescaling Grades) Result 3.3 is used frequently to rescale
grades in university courses. Suppose, for example, the original grades have a mean
of 70 and a standard deviation of 8, but the typical scale for grades is a mean of 68
and a standard deviation of 12. In that case, we have

wo SV _
T Sx 8

b=7, — aZe = 68 — (1.5)(70) = —37

Bo_is

Suppose that there is a particular “desired metric” (i.e., desired mean and
standard deviation) that scores are to be reported in, and that you were
seeking a formula for transforming any set of data into this desired metric.
For example, you seek a formula that will transform any set of x; into y; with
a mean of 500 and a standard deviation of 100. Result 3.3 might make it
seem at first glance that such a formula does not exist, i.e., that the formula
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would change with each new data set. This is, of course, true in one sense.
However, in another sense, we can write a single formula that will do the job
on any data set. We begin by defining the notion of Z-scores.

Definition 3.8 (Z-Scores) Z-scores are scores that have a mean of 0 and
a standard deviation of 1. Any set of N scores x; that are not all equal can be
converted into Z-scores by the following transformation rule

Ti— Te

Sx

Zi =

We say that a random variable is “in Z-score form” if it has a mean of 0 and
a standard deviation of 1. Any random variable X having expected value p and
standard deviation o may be converted to Z-score form via the transformation

_X-p
- g

Z

That the Z-score transformation rule accomplishes its desired purpose is
derived easily from the linear transformation rules. Specifically, when we
subtract the current mean from a random variable (or a list of numbers), we
do not affect the standard deviation, while we reduce the mean to zero. At that
point, we have a list of numbers with a mean of 0 and the original, unchanged
standard deviation. When we next divide by the standard deviation, the mean
remains at zero, while the standard deviation changes to 1.

Once the scores are in Z-score form, the linear transformation rules reveal
that it is very easy to transform them into any other “desired metric.” Sup-
pose, for example, we wished to transform the scores to have a mean of 500
and a standard deviation of 100. Since the mean is 0 and the standard devi-
ation 1, multiplying by 100 will change the standard deviation to 100 while
leaving the mean at zero. If we then add 500 to every value, the resulting
scores will have a mean of 500 and a standard deviation of 100.

Consequently, the following transformation rule will change any set of X
scores into Y scores with a mean of 500 and a standard deviation of 100, so
long as the original scores are not all equal.

XTi — Te

Sx

y; = 100 < ) + 500 (3.3)
The part of Equation 3.3 in parentheses transforms the scores into Z-score
form. Multiplying by 100 moves the standard deviation to 100 while leaving
the mean at 0. Adding 500 then moves the mean to 500 while leaving the
standard deviation at 100.

Z-scores also have an important theoretical property, i.e., their invariance
under linear transformation of the raw scores.

Result 3.4 (Invariance Property of Z-Scores) Suppose you have two vari-
ables X and Y, and Y is an order-preserving linear transformation of X.
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zX] X Y=2X-5 [Y]

+1 115 225 +1
0 100 195 0
-1 8 165 -1

Table 3.2 Invariance of Z-Scores Under Linear Transformation

Consider X and Y transformed to Z-score variables [zX] and [2Y]. Then
[2X] = [2Y]. The result holds for sets of sample scores, or for random vari-
ables.

To construct a simple example that dramatizes this result, we will employ
a well-known fundamental result in statistics.

Result 3.5 (Properties of 3 Evenly Spaced Numbers) Consider a set
of 8 evenly spaced numbers, with middle value M and “spacing” D, the differ-
ence between adjacent numbers. For example, the numbers 3,6,9 have M = 6
and D = 3. For any such set of numbers, the sample mean To is equal to
the middle value M, and the sample standard deviation Sx is equal to D, the
spacing.

This result makes it easy to construct simple data sets with a known mean
and standard deviation. It also makes it easy to compute the mean and
variance of 3 evenly spaced numbers by inspection.

Example 3.2 (Invariance of Z-Scores Under Linear Transformation) Con-
sider the data in Table 3.2.4. The X raw scores are evenly spaced, so it is easy to
see they have a mean of 100 and a standard deviation of 15. The [2X] scores are
+1, 0, and —1 respectively. Now, suppose we linearly transform the X raw scores
into Y scores with the equation Y = 2X — 5. The new scores, as can be predicted
from the linear transformation rules, will have a mean given by

Y. =2T, — 5=2(100) — 5 = 195,
and a standard deviation of
Sy =2Sx =2(15) =30

Since the Y raw scores were obtained from the X scores by linear transformation,
we can tell, without computing them, that the [zY] scores must also be +1, 0, and
—1. This is easily verified by inspection.

An important implication of Result 3.4 is that any statistic that is solely
a function of Z-scores must be invariant under linear transformations of the
observed variables.
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3.2.5 Covariances and Correlations

Multivariate analysis deals with the study of sets of variables, observed on one
or more populations, and the way these variables covary, or behave jointly. A
natural measure of how variables vary together is the covariance, based on the
following simple idea. Suppose there is a dependency between two variables
X and Y, reflected in the fact that high values of X tend to be associated with
high values of Y, and low values of X tend to be associated with low values of
Y. We might refer to this as a direct (positive) relationship between X and Y.
If such a relationship exists, and we convert X and Y to deviation score form,
the cross-product of the deviation scores should tend to be positive, because
when an X score is above its mean, a Y score will tend to be above its mean
(in which case both deviation scores will be positive), and when X is below
its mean, Y will tend to be below its mean (in which case both deviation
scores will be negative, and their product positive). Covariance is simply the
average cross-product of deviation scores.

Definition 3.9 (Population Covariance) The covariance of two random
variables, X and Y, denoted oxvy, is the average cross-product of deviation scores,
computed as

oxy = E[X - EC)Y - EX))] (3.4)
E(XY) — E(X)EY) (3.5)

Comment. Proving the equality of Equations 3.4 and 3.5 is an elementary
exercise in expected value algebra that is given in many mathematical statis-
tics texts. Equation 3.5 is generally more convenient in simple proofs. When
defining a sample covariance, we average by N — 1 instead of N, to maintain
consistency with the formulas for the sample variance and standard deviation.

Definition 3.10 (Sample Covariance) The sample covariance of X and Y
is defined as

Sxy = 1/(N71)Z[d:c]i[dy]i (3.6)

= (IN=1)) (zi—Te)(yi — V) (3.7)

M=

N N . «N
= 1/(N-1) <Z TilYi — i ﬂ”}\fzz‘:l yz) (3.8)

@
Il
—

The covariance, being a measure on deviation scores, is invariant under
addition or subtraction of a constant. On the other hand, multiplication or
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division of a constant affects the covariance, as described in the following
result.

Note that the variance of a variable may be thought of as its covariance
with itself. Hence, in some mathematical discussions, the notation oxx is
used (i.e., the covariance of X with itself) is used to signify the variance of
X.

Result 3.6 (Effect of a Linear Transform on Covariance) Suppose the
variables X andY are transformed into the variables W and M wvia the linear
transformations W = aX +b and M = c¢Y +d. Then the covariance between
the new variables W and M relates to the original covariance in the following
way. For random variables, we have

OWM = aCOXy
For samples of scores, we have
Swwm = acSxy

Covariances are important in statistical theory. (If they were not, why
would we be studying “the analysis of covariance structures”?) However,
the covariance between two variables does not have a stable interpretation if
the variables change scale. For example, the covariance between height and
weight changes if you measure height in inches as opposed to centimeters. The
value will be 2.54 times as large if you measure height in centimeters. So, for
example, if someone says “The covariance between height and weight is 65,”
it is impossible to tell what this implies without knowing the measurement
scales for height and weight.

3.2.5.1 The Population Correlation As we noted in the preceding section,
the covariance is not a scale-free measure of covariation. To stabilize the
covariance across changes in scale, one need only divide it by the product of
the standard deviations of the two variables. The resulting statistic, pgy, the
“Pearson Product Moment Correlation Coefficient,” is defined as the average
cross-product of Z scores.

From Result 3.4, we can deduce without effort one important characteristic
of the Pearson correlation, i.e., it is invariant under changes of scale of the
variables. So, for example, the correlation between height and weight will
be the same whether you measure height in inches or centimeters, weight in
pounds or kilograms.

Definition 3.11 (The Population Correlation p,,) For two random vari-
ables X and Y the “Pearson Product Moment Correlation Coefficient,” is defined
as

pxy = E(2X][2Y]) (3.9)

Alternatively, one may define the correlation as

pxy = XY (3.10)
OXxXO0y
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3.2.5.2 The Sample Correlation The sample correlation coefficient is defined
analogously to the population quantity. We have

Definition 3.12 (The Sample Correlation r,,) For N pairs of scores X
and Y the “Pearson Product Moment Correlation Coefficient,” is defined as
N
rxy =1/(N —1) Z[zm]l[zy]l (3.11)
i=1

There are a number of alternative computational formulas, such as

Sxvy
= 3.12
XY = 5o (3.12)
or its fully explicit expansion

YT N () (N - (L w)?)

(Note: Since all summations in Equation 3.13 run from 1 to N, I have simplified
the notation by eliminating them.)

With modern statistical software, actual hand computation of the correla-
tion coefficient is a rare event.

3.3 LINEAR COMBINATION RULES

The linear combination (or LC) is a key idea in statistics. While studying
factor analysis, structural equation modeling, and related methods, we will
encounter linear combinations repeatedly. Understanding how they behave is
important to the study of SEM. In this section, we define linear combinations,
and describe their statistical behavior.

3.3.1 Definition of a Linear Combination

Definition 3.13 (Linear Combination) A linear combination (or linear com-
posite) L of J random variables X is any weighted sum of those variables, i.e..,

J
L=Y ¢X, (3.14)
j=1

For sample data, in a data matrix X with IV rows and J columns, representing N
scores on each of J variables, a linear combination score for the ith set of observations
is any expression of the form

J
Li = ZC]'JJZ']' (3.15)
j=1
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Student Mid-term Final Grade

X Y G

Judi 70 78  75.33
Fred 60 86  77.33
Albert 50 82  71.33
Mean 60 82 74.67
SD 10 4 3.06

Table 3.3 Course Grades as a Linear Combination

The ¢; in Equations 3.14 and 3.15 are called linear weights.

It is important to be able to examine a statistical formula, decide whether
or not it contains or represents a LC, and identify the linear weights, with
their correct sign. A simple example is given below.

Example 3.3 (Course Grades as a Linear Combination) Suppose an
instructor announces at the beginning of a course that the course grade will be
produced by taking the mid-term exam grade, adding twice the final exam grade,
and dividing by 3. If the final grade is GG, the mid-term is X, and the final exam Y,
then the grades are computed using the formula
_X+2Yy 1

2
G 3 =3 X + 3 Y (3.16)
An example of such a situation is shown in Table 3.3. In this case, the course grade
is a linear combination, and the linear weights are +1/3 and +2/3.

Note: Table 3.3 gives the means and standard deviations for the mid-term exam
(X), the final exam (Y), and the course grade (G). In subsequent sections of this
chapter, we show how the mean and standard deviation for G can be calculated from
a knowledge of the mean and standard deviation of X and Y, the linear weights
that produced G, and the covariance between X and Y.

3.3.2 Mean Of A Linear Combination

When several variables are linearly combined, the resulting LC has a mean
that can be expressed as a linear function of the means of original variables.
This result, given here without proof, is the foundation of a number of im-
portant statistical methods.

Theorem 3.3 (Mean of a Linear Combination) Given J random vari-
ables X; having means ji;, the mean of a linear combination

J
L= Z Cij
j=1
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18
J
nr = E Cj s
j=1

For a set of N sample scores on J variables, with linear combination scores
computed as

J
liz E CiTij,
Jj=1

the mean of the linear combination scores is given by

J
l.: E ij.j
j=1

This simple, but very useful result allows one to compute the mean of a
LC without actually calculating LC scores.

Example 3.4 (Computing the Mean of a Linear Combination) Consider
again the data in Table 3.3. One may calculate the mean of the final grades by
calculating the individual grades, summing them, and dividing by N. An alternative
way is to compute the mean from the means of X and Y. So, for example, the mean
of the final grades must be

1 2

go = 3Tet 3.

- Q)

224

3
= 74.67

3.3.3 Variance and Covariance Of Linear Combinations

The variance of a LC also plays a very important role in statistical theory.

Theorem 3.4 (Variance of a Linear Combination) Given J random vari-
ables x; having variances 0]2 = 0j; and covariances oj, (between variables X;
and Xy ), the variance of a linear combination

J
L= Z Cij
Jj=1

18
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J o J
? Zchckajk (3.17)

UL ==
=1 k=1
J J J-1
= Zc?ajz- +QZZCjCijk (3.18)
j=1 =2 k=1

For a set of N sample scores on J wvariables, with linear combination scores

computed as
J
Li: E ijija
Jj=1

the variance of the linear combination scores is given by

J J
Sto= >0 oSk (3.19)

j=1k=1
J J J-1
= > 37 +2> Y oSk (3.20)
j=1 j=2 k=1

It is, of course, possible to define more than one LC on the same set of
variables. For example, consider a personality questionnaire that obtains re-
sponses from individuals on a large number of items. Several different person-
ality “scales” might be calculated as linear combinations of the items. (Items
not included in a scale have a linear weight of zero.) In that case, one may
be concerned with the covariance or correlation between the two LCs. The
following theorem describes how the covariance of two LCs may be calculated.

Theorem 3.5 (Covariance of Two Linear Combinations) Consider two
linear combinations L and M of a set of J random variables x;, having vari-

ances and covariances o;;. (If i = j, a variance of variable i is being referred

to, otherwise a covariance between variables i and j.) The two LCs are,

and

J J
oM — chjdkajk (321)
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The theorem generalizes to linear combinations of sample scores in the obvi-
ous way. For a set of N sample scores on J variables, with linear combination

scores computed as
J
Li = E le'ij
j=1

and
J
Mi = Z djl‘,‘j
j=1

the covariance of the linear combination scores is given by

J

Srv = ZZdeijk (3.22)

j=1k=1

Some comments are in order. First, note that Theorem 3.5 includes the
result of Theorem 3.4 as a special case (simply let L = M, recalling that the
variance of a variable is its covariance with itself). Second, the results of both
theorems can be expressed as a heuristic rule that is easy to apply in simple
cases.

Result 3.7 (Heuristic Rules for LCs and LTs) To compute a variance
of a linear combination or transformation, for example

L=X+Y,
perform the following steps:

1. Express the linear combination or transformation in algebraic form;

X+Y

2. Square the expression;

(X+Y)?=X2+YV?4+2XY

3. Transform the result with the following conversion rules: (a) Wherever
a squared variable appears, replace it with the variance of the variable.
(b) Wherever the product of two variables appears, replace it with the
covariance of the two variables. (c) Any expression that does not con-
tain either the square of a wvariable or the product of two variables is
eliminated.

X2+ Y?42XY — 0% + 0% +20xy

To calculate the covariance of two linear combinations, replace the first two
steps in the heuristic rules as follows:
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1. Write the two linear combinations side-by-side, for example;

(X+Y) (X-2V)

2. Compute their algebraic product;

X2 - XY —2Y?

The conversion rule described in step 3 above is then applied, yielding, with
the present example
0% —oxy — 20%

Result 3.7 applies identically to random variables or sets of sample scores.
It provides a convenient method for deriving a number of classic results in
statistics. A well known example is the difference between two variables, or,
in the sample case, the difference between two columns of numbers.

Example 3.5 (Variance of Difference Scores) Suppose you gather pairs of
scores x; and y; for N people, and compute, for each person, a difference score as

dizﬂfi*yi

Express the sample variance S% of the difference scores as a function of S%, S%,
and Sxvy.

Solution. First apply the heuristic rule. Squaring X — Y, we obtain X2 + Y2 —
2XY. Apply the conversion rules, and the result is

5% = Sk + Sy — 2Sxy

Example 3.6 (Variance of Course Grades) The data in Table 3.3 give the
variances of the X and Y tests. Since the deviation scores are easily calculated,
we can calculate the covariance Sxy = 1/(N — 1)) [dX][dY] between the two
exams as -20. Since the final grades are a linear combination of the exam grades,
we can generate a theoretical formula for the variance of the final grades. Since
G =1/3X + 2/3Y, application of the heuristic rule shows that

SZ = 1/9S% +4/957 +4/9Sxy
= 1/9(100) + 4/9(16) 4 4/9(—20)
= 84/9
= 9.33

The standard deviation of the final grades is thus v/9.33 = 3.06.
One aspect of the data in Table 3.3 is unusual, i.e., the scores on the two

exams are negatively correlated. In practice, of course, this is unlikely to
happen unless the class size is very small and the exams unusual. Normally,
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one observes a substantially positive correlation between grades on several
exams in the same course.

In the following example, we use LC theory to explain a phenomenon,
which we might call variance shrinkage, that has caught many a teacher by
surprise when computing standardized course grades.

Example 3.7 (Variance Shrinkage in Course Grades) Suppose an in-
structor is teaching a course in which the grades are computed simply by averaging
the marks from two exams. The instructor is told by the university administration
that, in this course, final grades should be standardized to have a mean of 70 and a
standard deviation of 10.

The instructor attempts to comply with this request. She standardizes the grades
on each exam to have a mean of 70 and a standard deviation of 10. She then
computes the final grades by averaging the standardized marks on the two exams,
which, incidentally, had a correlation of +.50. She sends the grades on to the
administration, but receives a memo several days later to the effect that, although
her final grades had a mean of 70, their standard deviation was incorrect. It was
supposed to be 10, but it was only 8.66. What went wrong?

Solution. We can explain this phenomenon using linear combination theory. Since
the final grades are obtained averaging the grades on the two mid-terms, the grades
are computed as a linear combination, i.e.,

G =(1/2)X + (1/2)Y

Using the heuristic rule, we establish that the variance of the grades must follow the
formula
5& = (1/4)S% + (1/4)S5 + (1/2)Sxvy

However, since 53( = 5%7 and Sxy = SxSyrxy = Sirzy, the formula reduces to

1+7rs
Sé = S?{ 7+2T' ¥

If ryy = .5, then S = (3/4)S%.

We have shown that, if the two tests correlate .5, and each test is standardized
to yield a mean of 70 and a standard deviation of 10, it is an inevitable consequence
of the laws of LC theory that the final grades, calculated as an average of the two
tests, will have a variance that is 75, and a standard deviation equal to v/75 = 8.66.
More generally, we have demonstrated that in similar situations, if the individual
tests are standardized to a particular mean and variance, the average of the two
tests will have a variance that “shrinks” by a multiplicative factor of (1 4 274y)/2.
On the other hand, it is easy to verify that the mean of the final grades will be the
desired value of 70.

Example 3.8 (The “Rich Get Richer” Phenomenon) Ultimately, the hy-
pothetical instructor in Example 3.7 will have to do something to offset the variance
shrinkage. What should she do?

The answer should be apparent from our study of linear transformation theory.
There are several ways to approach the problem, some more formal than others. The
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problem is that the variance of the scores is too low, so they need to be “stretched
out” along the number line. Intuitively, we should realize that if we subtract 70
from each student’s average grade, we will have a set of scores with a mean of 0
and a standard deviation of 8.66. If we then multiply each score by 10/8.66, we
will have scores with a mean of 0 and a standard deviation of 10. Adding back 70
to the numbers will then restore the proper mean of 70, while leaving the standard
deviation of 10. This transformation can be written literally as

M; = (G; — 70)(10/8.66) + 70 (3.23)

There are, of course, alternative approaches. One is to transform each student’s
mark to a Z-score, then multiply by 10 and add 70. This transformation can be

written
G, — 170

8.66
With a small amount of manipulation, you can see that these two transformation
rules are equivalent.

Study Equation 3.23 briefly, and see how it operates. Notice that it “expands”the
individual’s deviation score (his/her difference from the mean of 70), making it larger
than it was before. In this case, the multiplying factor is 10/8.66, so, for example,
a grade of 78.66 would be transformed into a grade of 80. It is easy to see that, if
the individual exam grades and the final mark are scaled to have the same standard
deviation, any student with an exam average above the mean will receive a final
grade higher than their exam average. On the other hand, any student with an
exam grade below average will receive a mark lower than their exam average. For
example, a person with a grade of 61.34, and a deviation score of —8.66, would
have the deviation score transformed to —10, and the grade changed to 60. In my
undergraduate courses, I refer to this phenomenon as “The Rich Get Richer, The
Poor Get Poorer.” This phenomenon can be the source of considerable consternation
for a student whose grades have been below the mean, as the student’s final grade
may be lower than any of his/her grades on the exams. Indeed, the lower the
student’s mark, the more it is reduced! On the other hand, students with consistently
above-average performance may get a pleasant surprise if they are unaware of this
effect.

M; =10 + 70

Linear combination theory can be used to prove a number of surprising
results in statistics. The following example shows how to take two columns of
numbers and compute two linear combinations on them that are guaranteed
to have a zero correlation.

Example 3.9 (Constructing Sets of Uncorrelated Scores) Statistics
instructors sometimes construct sample data sets with certain characteristics. Here
is a simple way to construct two columns of numbers that have an ezactly zero
correlation. 1 will describe the method first, then we will use linear combination
theory to explain why the scores must have a zero correlation.

The method is as follows: First, simply write down a list of N different numbers
in a column. Call these numbers X. Next to the X column, write the exact same
numbers, but in a different order. Call these Y. Now, create two additional columns
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X Y W=X+Y M=X-Y

1 2 3 -1
2 3 5 -1
3 95 8 -2
4 1 5 3
5 4 9 1

Table 3.4 Constructing Numbers with Zero Correlation

of numbers, W and M. W is the sum of X and Y, M the difference between X and
Y. W and M will have a zero correlation.

An example of the method is shown in Table 3.3.3. Using any general purpose
statistical program, you can verify that the numbers indeed have a precisely zero
correlation. Can you explain why?

Solution. We can develop a general expression for the correlation between two
columns of numbers, using our heuristic rules for linear combinations. Let’s begin by
computing the covariance between W and M. First, we take the algebraic product
of X +Y and X — Y. We obtain

(X+Y)(X-Y)=X>-Y"
Applying the conversion rule, we find that
Sx+v.x—y = S% — S%

Note that the covariance between W and M is unrelated to the covariance be-
tween the original columns of numbers, X and Y! Moreover, if X and Y have the
same variance, then W and M will have a covariance of exactly zero. Since the
correlation is the covariance divided by the product of the standard deviations, it
immediately follows that W and M will have a correlation of zero if and only if X
and Y have the same variance. If X and Y contain the same numbers (in permuted
order), then they have the same variance, and W and M will have zero correlation.

Problems

3.1 Suppose you have a set of data in the variable X having a sample mean
Te = 100 and a sample standard deviation Sx = 10. For each of the following
transformed variables, indicate the mean gy, and the standard deviation Sy .

3.1.1. Yi = 2],‘1'

3.1.2. Yi = Tj — 5}

3.1.3. y; = (J?l — f.)/SX

3.1.4. y; =2(z; — 5)/10+ 7
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3.2 A set of scores that are in Z-score form are multiplied by 10, then 5 is
added to each number. What will be the mean and standard deviation of the
resulting scores?

3.3 You have two sets of scores X and Y, on the same N individuals.
Suppose Ty = 34.5, §, = 44.9, 5% = 38.8, 5% = 44.4, and Sxy = 20.

3.3.1. Compute the mean and variance of the linear combination scores
w; = 21‘,’ — Yi.

3.3.2. Compute the covariance and correlation between the two linear
combinations a; = x; + y; and b; = x; — 2y;.

3.4 The grades in a particular course have a mean of 70 and a standard
deviation of 10. However, they are supposed to have a mean of 65 and a
standard deviation of 8. You and a friend are the teaching assistants in the
course, and are asked to transform the grades. You decide to multiply each
grade by .8, then add 9 to each grade. You are about to do this when your
friend interrupts you, and says that you should first add 11.25 to each score,
and then multiply by .8. Who is correct?

3.5 Given random variables X and Y, suppose it is known that both random
variables have zero means, and that £(X?) = 9, £(Y?) = 4, and that £(XY) =
4. Find the covariance and correlation between X and Y, i.e., pzy and ogy.





